Waveform relaxation of partial differential equations | Numerical Algorithms Skip to main content
Log in

Waveform relaxation of partial differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This short paper concludes a general waveform relaxation (WR) method at the PDE level for semi-linear reaction-diffusion equations. For the case of multiple coupled PDE(s), new Jacobi WR and Gauss-Seidel WR are provided to accelerate the convergence result of classical WR. The convergence conditions are proved based on energy estimate. Numerical experiments are demonstrated with several WR methods in parallel to verify the effectiveness of the general WR method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye, Q.X., Li, Z.Y.: Introduction to Reaction Diffusion Equations. Science Press, Beijing (1990)

    MATH  Google Scholar 

  2. White, J., Odeh, F., Vincentelli, A.S., Ruehli, A.: Waveform relaxation: theory and practice. Trans. Soc. Comput. Simulation 2(April), 95–133 (1985)

    Google Scholar 

  3. Bartoszewski, Z., Kwapisz, M.: On the convergence of waveform relaxation methods for differential-functional systems of equations. J. Math. Anal. Appl. 235 (2), 478–496 (1999)

    Article  MathSciNet  Google Scholar 

  4. Zubik-Kowal, B., Vandewalle, S.: Waveform relaxation for functional-differential equations. SIAM J. Sci. Comput. 21(1), 207–226 (1999)

    Article  MathSciNet  Google Scholar 

  5. Jiang, Y.L., Wing, O.: On monotone waveform relaxation for systems of nonlinear differential-algebraic equations. SIAM J. Numer. Anal. 38(1), 170–185 (2000)

    Article  MathSciNet  Google Scholar 

  6. Jiang, Y.L.: A general approach to waveform relaxation solutions of nonlinear differential-algebraic equations: the continuous-time and discrete-time cases. IEEE T. Circuits-1. 51, 1770–1780 (2004)

    Article  MathSciNet  Google Scholar 

  7. Jiang, Y.L.: Waveform relaxation methods of nonlinear integral-differential-algebraic equations. J. Comput. Math. 23 (1), 49–66 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Jiang, Y.L., Ding, X.L.: Waveform relaxation for fractional differential equations with the Caputo derivatives. J. Comput. Appl. Math. 238(1), 51–67 (2013)

    Article  MathSciNet  Google Scholar 

  9. Liu, J., Jiang, Y.L.: Waveform relaxation for reaction-diffusion equations. J. Comput. Appl. Math. 235, 5040–5055 (2011)

    Article  MathSciNet  Google Scholar 

  10. Jiang, Y.L., Miao, Z.: Quasi-newton waveform relaxation based on energy method. J. Comput. Math. (2017). https://doi.org/10.4208/jcm.1702-m2016-0700

    Article  MathSciNet  Google Scholar 

  11. Ladics, T.: Error analysis of waveform relaxation method for semi-linear partial differential equations. J. Comput. Appl. Math. 285(C), 15–31 (2015)

    Article  MathSciNet  Google Scholar 

  12. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  13. Dym, H.: Linear Algebra in Action. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  14. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer, Berlin Heidelberg (1996)

    MATH  Google Scholar 

  15. Jiang, Y.L.: Waveform Relaxation Methods. Science Press, Beijing (2009)

    Google Scholar 

  16. Liu, J., Jiang, Y.L.: A parareal waveform relaxation algorithm for semi-linear parabolic partial differential equations. J. Comput. Appl. Math. 236(17), 4245–4263 (2012)

    Article  MathSciNet  Google Scholar 

  17. Jiang, Y.L.: On time-domain simulation of lossless transmission lines with nonlinear terminations. SIAM J. Numer. Anal. 42(3), 1018–1031 (2004)

    Article  MathSciNet  Google Scholar 

  18. Jiang, Y.L., Wing, O.: A note on convergence conditions of waveform relaxation algorithms for nonlinear differential algebraic equations. Appl. Numer. Math. 36(2-3), 281–297 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (NSFC) under grant (61663043) and Natural Science Basis Research Plan in Shaanxi Province of China under grant 2016JM5077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Lin Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, YL., Miao, Z. Waveform relaxation of partial differential equations. Numer Algor 79, 1087–1106 (2018). https://doi.org/10.1007/s11075-018-0475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0475-5

Keywords

Navigation