Local convergence of generalized Mann iteration | Numerical Algorithms Skip to main content
Log in

Local convergence of generalized Mann iteration

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The local convergence of generalized Mann iteration is investigated in the setting of a real Hilbert space. As application, we obtain an algorithm for estimating the local radius of convergence for some known iterative methods. Numerical experiments are presented showing the performances of the proposed algorithm. For a particular case of the Ezquerro-Hernandez method (Ezquerro and Hernandez, J. Complex., 25:343–361: 2009), the proposed procedure gives radii which are very close to or even identical with the best possible ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maruster, St.: Local convergence radius for generalized Mann iteration. Ann. West Univ. Timisoara Math. Comput. Sci. LIII(2), 109–120 (2015)

    Google Scholar 

  2. Ezquerro, J.A., Hernandez, M.A.: An optimization of Chebyshev’s method. J. Complex 25, 343–361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. Polish Acad. Sci. Banach Center Publ 3, 129–142 (1975)

    Article  MathSciNet  Google Scholar 

  4. Hernández-Veron, M.A., Romero, N.: On the local convergence of a third order family of iterative processes. Algorithms 8, 1121–1128 (2015)

    Article  MathSciNet  Google Scholar 

  5. Vertgeim, B.A.: On conditions for the applicability of Newton method (Russian). Dokl. Akad. Nauk. SSSR 110, 719–722 (1956)

    MathSciNet  MATH  Google Scholar 

  6. Rall, L.B.: A note on the convergence of Newton method. SIAM J. Numer. Anal. 11(1), 34–36 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Traub, J.F., Wozniakowski, H.: Convergence and complexity of Newton iteration for operator equations. J. Assoc. Comput. Mach. 26(2), 250–258 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Smale, S.: Complexity theory and numerical analysis. Acta Numer. 6, 523–551 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Argyros, I.K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Argyros, I.K.: Concerning the ’terra ingognita’ between convergence regions of two Newton methods. Nonlinear Anal. 62, 179–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Argyros, I.K.: Concerning the radii of convergence for a certain class of Newton-like methods. J. Korea Math. Soc. Educ. Ser. B Pure Appl. Math. 15(1), 47–55 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Ferreira, O.P.: Local convergence of Newton method in Banach space from the viewpoint of the majorant principle. IMA J. of Numer. Anal. 29, 746–759 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ren, H.: On the local convergence of a deformed Newton method under Argyros-type condition. J. Math. Anal. Appl. 321, 396–404 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, X.: Convergence of Newton method and uniqueness of the solution of equations in Banach space. IMA J. on Numer. Anal. 20, 123–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maruster, St.: Strong convergence of the Mann iteration for demicontractive mappings. Appl. Math. Sci. 9, 2061–2068 (2015)

    Google Scholar 

  16. Maruster, St., Rus, I.A.: Kannan contractions and strongly demicontractive mappings. Creative Math. Inf. 24(2), 171–180 (2015)

    MathSciNet  Google Scholar 

  17. Senter, H.F., Dotson, W.G.: Approximating fixed points of nonexpansive mappings. Proc. Amer. Math. Soc. 44(2), 375–308 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Outlaw, C.L.: Mean value iteration for nonexpansive mappings in a Banach space. Pacific J. Math. 30(3), 747–759 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maruster, St.: The solution by iteration of nonlinear equations in Hilbert spaces. Proc. Amer. Math. Soc. 63(1), 69–73 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Catinas, E.: Estimating the radius of an attraction ball. Appl. Math. Lett. 228, 712–714 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to St. Maruster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruster, S., Maruster, L. Local convergence of generalized Mann iteration. Numer Algor 76, 905–916 (2017). https://doi.org/10.1007/s11075-017-0289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0289-x

Keywords

Navigation