An inexact modified relaxed splitting preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations | Numerical Algorithms Skip to main content
Log in

An inexact modified relaxed splitting preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Based on the modified relaxed splitting (MRS) preconditioner proposed by Fan and Zhu (Appl. Math. Lett. 55, 18–26 2016), an inexact modified relaxed splitting (IMRS) preconditioner is proposed for the generalized saddle point problems arising from the incompressible Navier-Stokes equations. The eigenvalues and eigenvectors of the preconditioned matrix are analyzed, and the convergence property of the corresponding iteration method is also discussed. Numerical experiments are presented to show the effectiveness of the proposed preconditioner when it is used to accelerate the convergence rate of Krylov subspace methods such as GMRES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z.-Z.: Structured preconditioners for nonsigular matrices of block two-by-two structures. Math. Comp. 75(254), 791–815 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, Z.-Z.: Motivations and realizations of Krylov subspace methods for large sparse linear systems. J. Comput. Appl. Math. 283, 71–78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Z.-Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algorithms 56(2), 297–317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA. J. Numer. Anal. 27(1), 1–23 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM. J. Matrix Anal. Appl. 24(3), 603–626 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98(1), 1–32 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, Z.-Z., Ng, M.K.: On inexact preconditioners for nonsymmetric matrices. SIAM. J. Sci. Comput. 26(5), 1710–1724 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Bai, Z.-Z., Ng, M.K., Wang, Z.-Q.: Constraint preconditioners for symmetric indefinite matrices. SIAM. J. Matrix Anal. Appl. 31(2), 410–433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428(11-12), 2900–2932 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benzi, M., Guo, X.-P.: A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations. Appl. Numer. Math. 61(1), 66–76 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benzi, M., Golub, G.H.: A preconditioner for generalized saddle point problems. SIAM. J. Matrix Anal. Appl. 26(1), 20–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14(2), 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benzi, M., Liu, J.: An efficient solver for the incompressible Navier-Stokes equations in rotation form. SIAM. J. Sci. Comput. 29(5), 1959–1981 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Benzi, M., Ng, M., Niu, Q., Wang, Z.: A relaxed dimensional factorization preconditioner for the incompressible Navier-Stokes equations. J. Comput. Phys. 230 (16), 6185–6202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benzi, M., Wang, Z.: Analysis of augmented Lagrangian-based preconditioners for the steady incompressible Navier-Stokes equations. SIAM. J. Sci. Comput. 33(5), 2761–2784 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Cao, Z.-H.: Fast Uzawa algorithm for generalized saddle point problems. Appl. Numer. Math. 46(2), 157–171 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cao, Y., Dong, J.-L., Wang, Y.-M.: A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier-Stokes equation. J. Comput. Appl. Math. 273, 41–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cao, Y., Jiang, M.-Q., Zheng, Y.-L.: A splitting preconditioner for saddle point problems. Numer. Linear Algebra Appl. 18(5), 8875–895 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cao, Y., Miao, S.-X., Cui, Y.-S.: A relaxed splitting preconditioner for generalized saddle point problems. Comp. Appl. Math. 34(3), 865–879 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cao, Y., Yao, L.-Q., Jiang, M.-Q.: A modified dimensional split preconditioner for generalized saddle point problems. J. Comput. Appl. Math. 250, 70–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ciarlet, P.G., Lions, J.L., Glowinski, R.: Numerical Methods for Fluids. Elsevier, North-Holland (2003)

    Google Scholar 

  22. Chen, F.: On choices of iteration parameter in HSS method. Appl. Math. Comput. 271, 832–837 (2015)

    MathSciNet  Google Scholar 

  23. Davis, T.A., Duff, I.S.: An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM. J. Matrix Anal. Appl. 18(1), 140–158 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Elman, H.C., Ramage, A., Silvester, D.J.: IFISS: A Matlab Toolbox for modelling incompressible flow. ACM Trans. Math. Software 33(2), Art. 14 18 pp (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford university press, UK (2014)

    Book  MATH  Google Scholar 

  26. Fan, H.-T., Zhu, X.-Y.: A modified relaxed splitting preconditioner for generalized saddle point problems from the incompressible Navier-Stokes equations. Appl. Math. Lett. 55, 18–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fan, H.-T., Zheng, B., Zhu, X.-Y.: A relaxed positive semi-definite and skew-Hermitian splitting preconditioner for non-Hermitian generalized saddle point problems. Numer. Algorithms 72(3), 813–834 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, Y.-M.: A practical formula for computing optimal parameters in the HSS iteration methods. J. Comput. Appl. Math. 255, 142–149 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang, T.-Z., Wu, S.-L., Li, C.-X.: The spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for generalized saddle point problems. J. Comput. Appl. Math. 229(1), 37–46 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krukier, L.A., Krukier, B.L., Ren, Z.-R.: Generalized skew-Hermitian triangular splitting iteration methods for saddle-point linear systems. Numer. Linear Algebra Appl. 21(1), 152–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ke, Y.-F., Ma, C.-F.: Spectrum analysis of a more general augmentation block preconditioner for generalized saddle point matrices. BIT 56(2), 489–500 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Saad, Y.: Krylov subspace methods for solving large unsymmetric linear systems. Math. Comp. 37(155), 105–126 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Saad, Y.: Iterative Methods for Sparse Linear Systems, Second edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  34. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM. J. Sci. Statist. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tan, N.-B., Huang, T.-Z., Hu, Z.-J.: A relaxed splitting preconditioner for the incompressible Navier-Stokes equations (2012)

  36. Vorst, H.A., Van der, Vuik, C.: The superlinear convergence behaviour of GMRES. J. Comput. Appl. Math. 48(3), 327–341 (1993)

  37. Wu, X.-N., Golub, G.H., Cuminato, J.A., Yuan, J.-Y.: Symmetric-triangular decomposition and its applications Part II: Preconditioners for indefinite systems. BIT 48(1), 139–162 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, G.-F., Ren, Z.-R., Zhou, Y.-Y.: On HSS-based constraint preconditioners for generalized saddle-point problems. Numer. Algorithms 57(2), 273–287 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Feng Ma.

Additional information

This work was supported by National Natural Science Foundation of China (Grant No. 11071041) and Fujian Natural Science Foundation (Grant Nos. 2015J01578, 2016J01005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, YF., Ma, CF. An inexact modified relaxed splitting preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations. Numer Algor 75, 1103–1121 (2017). https://doi.org/10.1007/s11075-016-0233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0233-5

Keywords

Mathematics Subject Classification (2010)

Navigation