Abstract
In the present paper we introduce new matrix extrapolation methods as generalizations of well known methods such as polynomial vector extrapolation methods or 𝜖-type algorithms. We give expressions of the obtained approximations via the Schur complement, the Kronecker product and also by using a new matrix product. We apply these methods to linearly generated sequences especially those arising in control or in ill-posed problems.
Similar content being viewed by others
References
Bouhamidi, A., Jbilou, K., Reichel, L., Sadok, H.: An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure. J. Comput. Appl. Math. 236, 2078–2089 (2012)
Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)
Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods. Theory and Practice. North-Holland, Amsterdam (1991)
Brezinski, C.: Généralisation de la transformation de Shanks, de la table de la Table de Padé et l’epsilon-algorithm. Calcolo 12, 317–360 (1975)
Brezinski, C., Redivo Zaglia, M.: Vector and matrix sequence transformations based on biorthogonality. Appl. Numer. Math. 21, 353–373 (1996)
Brezinski, C.: Other manifestations of the Schur complement. Lin. Alg. Appl. 111, 231–247 (1988)
Brezinski, C., Redivo-Zaglia, M., A Schur complement approach to a general extrapolation algorithm. Lin. Alg. Appl. 279-301, 368 (2003)
Brezinski, C., Redivo-Zaglia, M.: The simplified topological epsilon-algorithms for accelerating sequences in a vector space. http://arxiv.org/abs/1402.2473
Brezinski, C.: Block descent methods and hybrid procedures for linear systems. Numer. Algo. 29, 21–32 (2002)
Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits for vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)
Eddy, R.P.: Extrapolation to the limit of a vector sequence. In: Wang, P. C. C. (ed.) Information Linkage Between Applied Mathematics and Industry, pp 387–396. Academic Press, New-York (1979)
Hansen, P. C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algo. 46, 189–194 (2007)
Jbilou, K., Sadok, H.: Vector extrapolation methods. Application and numerical comparison. J. Comp. Appl. Math. 122, 149–165 (2000)
Jbilou, K., Sadok, H.: Analysis of some vector extrapolation methods for linear systems. Numer. Math. 70, 73–89 (1995)
Jbilou, K., Sadok, H.: LU-implementation of the modified minimal polynomial extrapolation method. IMA J. Numer. Anal. 19, 549–561 (1999)
Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for multiple right-hand sides. Appl. Num. Math. 31, 49–63 (1999)
Jbilou, K., Messaoudi, A., Tabaa, K.: Some Schur complement identities to matrix extrapolation methods. Lin. Alg. Appl. 392, 195–210 (2004)
Mes̀ina, M.: Convergence acceleration for the iterative solution of x=Ax+f. Comput. Meth. Appl. Mech. Eng. 10 (2), 165–173 (1977)
Ouellette, D.V.: Schur complements and statistics. Lin. Alg. Appl. 36, 1870–295 (1981)
Pugatchev, B.P.: Acceleration of the convergence of iterative processes and a method for solving systems of nonlinear equations, U.S.S.R. Comput. Math. and Math. Phys. 17, 199–207 (1978)
Saad, Y.: Iterative methods for sparse linear systems. PWS Press, New York (1995)
Shanks, D.: Nonlinear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34, 1–42 (1955)
Sidi, A.: Convergence and stability of minimal polynomial and reduced rank extrapolation algorithms. SIAM J. Numer. Anal. 23, 197–209 (1986)
Sidi, A., Ford, W.F., Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer. Anal. 23, 178–196 (1986)
Sidi, A.: Efficient implementation of minimal polynomial and reduced rank extrapolation methods. J. Comput. Appl. Math. 36, 305–337 (1991)
Smith, R.: Matrix equation A + BX = C. SIAM J. Appl. Math. 16, 198–201 (1968)
Wynn, P.: Acceleration technique for iterated vector and matrix problems. Math. Comp. 16, 301–322 (1962)
Zhang, F.-Z.: The Schur Complement and its applications. Springer, New York (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jbilou, K., Sadok, H. Matrix polynomial and epsilon-type extrapolation methods with applications. Numer Algor 68, 107–119 (2015). https://doi.org/10.1007/s11075-014-9879-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-014-9879-z