Matrix polynomial and epsilon-type extrapolation methods with applications | Numerical Algorithms
Skip to main content

Matrix polynomial and epsilon-type extrapolation methods with applications

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the present paper we introduce new matrix extrapolation methods as generalizations of well known methods such as polynomial vector extrapolation methods or 𝜖-type algorithms. We give expressions of the obtained approximations via the Schur complement, the Kronecker product and also by using a new matrix product. We apply these methods to linearly generated sequences especially those arising in control or in ill-posed problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouhamidi, A., Jbilou, K., Reichel, L., Sadok, H.: An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure. J. Comput. Appl. Math. 236, 2078–2089 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods. Theory and Practice. North-Holland, Amsterdam (1991)

    MATH  Google Scholar 

  4. Brezinski, C.: Généralisation de la transformation de Shanks, de la table de la Table de Padé et l’epsilon-algorithm. Calcolo 12, 317–360 (1975)

    Article  MathSciNet  Google Scholar 

  5. Brezinski, C., Redivo Zaglia, M.: Vector and matrix sequence transformations based on biorthogonality. Appl. Numer. Math. 21, 353–373 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezinski, C.: Other manifestations of the Schur complement. Lin. Alg. Appl. 111, 231–247 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezinski, C., Redivo-Zaglia, M., A Schur complement approach to a general extrapolation algorithm. Lin. Alg. Appl. 279-301, 368 (2003)

    Google Scholar 

  8. Brezinski, C., Redivo-Zaglia, M.: The simplified topological epsilon-algorithms for accelerating sequences in a vector space. http://arxiv.org/abs/1402.2473

  9. Brezinski, C.: Block descent methods and hybrid procedures for linear systems. Numer. Algo. 29, 21–32 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits for vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eddy, R.P.: Extrapolation to the limit of a vector sequence. In: Wang, P. C. C. (ed.) Information Linkage Between Applied Mathematics and Industry, pp 387–396. Academic Press, New-York (1979)

    Chapter  Google Scholar 

  12. Hansen, P. C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algo. 46, 189–194 (2007)

    Article  MATH  Google Scholar 

  13. Jbilou, K., Sadok, H.: Vector extrapolation methods. Application and numerical comparison. J. Comp. Appl. Math. 122, 149–165 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jbilou, K., Sadok, H.: Analysis of some vector extrapolation methods for linear systems. Numer. Math. 70, 73–89 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jbilou, K., Sadok, H.: LU-implementation of the modified minimal polynomial extrapolation method. IMA J. Numer. Anal. 19, 549–561 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for multiple right-hand sides. Appl. Num. Math. 31, 49–63 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jbilou, K., Messaoudi, A., Tabaa, K.: Some Schur complement identities to matrix extrapolation methods. Lin. Alg. Appl. 392, 195–210 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mes̀ina, M.: Convergence acceleration for the iterative solution of x=Ax+f. Comput. Meth. Appl. Mech. Eng. 10 (2), 165–173 (1977)

    Article  MathSciNet  Google Scholar 

  19. Ouellette, D.V.: Schur complements and statistics. Lin. Alg. Appl. 36, 1870–295 (1981)

    Article  MathSciNet  Google Scholar 

  20. Pugatchev, B.P.: Acceleration of the convergence of iterative processes and a method for solving systems of nonlinear equations, U.S.S.R. Comput. Math. and Math. Phys. 17, 199–207 (1978)

    Article  Google Scholar 

  21. Saad, Y.: Iterative methods for sparse linear systems. PWS Press, New York (1995)

    Google Scholar 

  22. Shanks, D.: Nonlinear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34, 1–42 (1955)

    MATH  MathSciNet  Google Scholar 

  23. Sidi, A.: Convergence and stability of minimal polynomial and reduced rank extrapolation algorithms. SIAM J. Numer. Anal. 23, 197–209 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sidi, A., Ford, W.F., Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer. Anal. 23, 178–196 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sidi, A.: Efficient implementation of minimal polynomial and reduced rank extrapolation methods. J. Comput. Appl. Math. 36, 305–337 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Smith, R.: Matrix equation A + BX = C. SIAM J. Appl. Math. 16, 198–201 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wynn, P.: Acceleration technique for iterated vector and matrix problems. Math. Comp. 16, 301–322 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhang, F.-Z.: The Schur Complement and its applications. Springer, New York (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jbilou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jbilou, K., Sadok, H. Matrix polynomial and epsilon-type extrapolation methods with applications. Numer Algor 68, 107–119 (2015). https://doi.org/10.1007/s11075-014-9879-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9879-z

Keywords

Mathematics Subject Classifications (2010)