Error analysis of the mdLVs algorithm for computing bidiagonal singular values | Numerical Algorithms Skip to main content
Log in

Error analysis of the mdLVs algorithm for computing bidiagonal singular values

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Some of the authors show in Iwasaki and Nakamura (Inverse Probl 20:553–563, 2004) that the integrable discrete Lotka–Volterra (dLV) system is applicable for computing singular values of bidiagonal matrix. The resulting numerical algorithm is referred to as the dLV algorithm. They also observe in Iwasaki and Nakamura (Electron Trans Numer Anal 38:184–201, 2011) that the singular values are numerically computed with high relative accuracy by using the mdLVs algorithm, which is an acceleration version by introducing a shift of origin. In this paper, we investigate the perturbations on singular values and the forward errors of the mdLVs variables, which occur in the mdLVs algorithm, through two kinds of error analysis in floating point arithmetic. Therefore the forward stability of the mdLVs algorithm in the sense of Bueno–Marcellan–Dopico is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bueno, M.I., Marcellan, F.: Darboux transformation and perturbation of linear functionals. Linear Algebra Appl. 384, 215–242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bueno, M.I., Dopico, F.M.: A more accurate algorithm for computing the Christoffel transformation. J. Comput. Appl. Math. 205, 567–582 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaitin-Chatelin, F., Fraysse, V.: Lectures on Finite Precision Computations. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  4. Demmel, J., Kahan, W.: Accurate singular values of bidiagonal matrices. SIAM J. Sci. Statist. Comput. 11, 873–912 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fernando, K.V., Parlett, B.N.: Accurate singular values and differential qd algorithms. Numer. Math. 67, 191–229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  7. Hirota, R.: Conserved quantities of a random-time Toda equation. J. Phys. Soc. Jpn. 66, 283–284 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iwasaki, M., Nakamura, Y.: On the convergence of a solution of the discrete Lotka–Volterra system. Inverse Probl. 18, 1569–1578 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iwasaki, M., Nakamura, Y.: An application of the discrete Lotka–Volterra system with variable step-size to singular value computation. Inverse Probl. 20, 553–563 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iwasaki, M., Nakamura, Y.: Accurate computation of singular values in terms of shifted integrable schemes. Jpn. J. Ind. Appl. Math. 23, 239–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iwasaki, M., Nakamura, Y.: Positivity of dLV and mdLVs algorithms for computing singular values. Elec. Trans. Numer. Anal. 38, 184–201 (2011)

    MathSciNet  Google Scholar 

  12. Parlett, B.N.: The new qd algorithm. Acta Numer. 4, 459–491 (1995)

    Article  MathSciNet  Google Scholar 

  13. Rutishauser, H.: Lectures on Numerical Mathematics. Brinkhäuser, Boston (1990)

    Book  MATH  Google Scholar 

  14. Spiridonov, V., Zhedanov, A.: Discrete-time Volterra chain and classical orthogonal polynomials. J. Phys. A.: Math. Gen. 30, 8727–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Iwasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagata, M., Iwasaki, M. & Nakamura, Y. Error analysis of the mdLVs algorithm for computing bidiagonal singular values. Numer Algor 61, 261–274 (2012). https://doi.org/10.1007/s11075-012-9607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9607-5

Keywords

Mathematics Subject Classifications (2010)

Navigation