Abstract
We use a piecewise-linear, discontinuous Galerkin method for the time discretization of a fractional diffusion equation involving a parameter in the range − 1 < α < 0. Our analysis shows that, for a time interval (0,T) and a spatial domain Ω, the error in \(L_\infty\bigr((0,T);L_2(\Omega)\bigr)\) is of order k 2 + α, where k denotes the maximum time step. Since derivatives of the solution may be singular at t = 0, our result requires the use of non-uniform time steps. In the limiting case α = 0 we recover the known O(k 2) convergence for the classical diffusion (heat) equation. We also consider a fully-discrete scheme that employs standard (continuous) piecewise-linear finite elements in space, and show that the additional error is of order h 2log(1/k). Numerical experiments indicate that our O(k 2 + α) error bound is pessimistic. In practice, we observe O(k 2) convergence even for α close to − 1.
Similar content being viewed by others
References
Chen, C.-M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007). doi:10.1016/j.jcp.2007.05.012
Chen, C.-M., Liu, F., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algorithms 54, 1–21 (2010). doi:10.1007/s11075-009-9320-1
Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusive-wave equations. Math. Comput. 75, 673–696 (2006)
Eriksson, K., Johnson, C., Thomée, V.: Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Modél. Math. Anal. Numér. 19, 611–643 (1985)
McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007). doi:10.1007/s00211-006-0045-y
McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algorithms 52, 69–88 (2009). doi:10.1007/s11075-008-9258-8
McLean, W., Thomée, V.: Numerical solution of an evolution equation with a positive-type memory term. Austral. J. Math. Soc. Ser. B 35, 23–70 (1993)
McLean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional order evolution equation. IMA J. Numer. Anal. 30, 208–230 (2010). doi:10.1093/imanum/drp004
Mustapha, K.: An implicit finite difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. (to appear)
Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of postive type. Math. Comput. 78, 1975–1995 (2009)
Schädle, A., López-Fernandez, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM Sci. J. Comput. 28, 421–438 (2006)
Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM Numer. J. Anal. 42, 1862–1874 (2005)
Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for anomalous subdiffusion equation. SIAM Numer. J. Anal. 46, 1079–1095 (2008). doi:10.1137/060673114
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mustapha, K., McLean, W. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer Algor 56, 159–184 (2011). https://doi.org/10.1007/s11075-010-9379-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-010-9379-8