Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation | Numerical Algorithms Skip to main content
Log in

Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We use a piecewise-linear, discontinuous Galerkin method for the time discretization of a fractional diffusion equation involving a parameter in the range − 1 < α < 0. Our analysis shows that, for a time interval (0,T) and a spatial domain Ω, the error in \(L_\infty\bigr((0,T);L_2(\Omega)\bigr)\) is of order k 2 + α, where k denotes the maximum time step. Since derivatives of the solution may be singular at t = 0, our result requires the use of non-uniform time steps. In the limiting case α = 0 we recover the known O(k 2) convergence for the classical diffusion (heat) equation. We also consider a fully-discrete scheme that employs standard (continuous) piecewise-linear finite elements in space, and show that the additional error is of order h 2log(1/k). Numerical experiments indicate that our O(k 2 + α) error bound is pessimistic. In practice, we observe O(k 2) convergence even for α close to − 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C.-M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007). doi:10.1016/j.jcp.2007.05.012

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, C.-M., Liu, F., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algorithms 54, 1–21 (2010). doi:10.1007/s11075-009-9320-1

    Article  MATH  MathSciNet  Google Scholar 

  3. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusive-wave equations. Math. Comput. 75, 673–696 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eriksson, K., Johnson, C., Thomée, V.: Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Modél. Math. Anal. Numér. 19, 611–643 (1985)

    MATH  Google Scholar 

  5. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007). doi:10.1007/s00211-006-0045-y

    Article  MATH  MathSciNet  Google Scholar 

  6. McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algorithms 52, 69–88 (2009). doi:10.1007/s11075-008-9258-8

    Article  MATH  MathSciNet  Google Scholar 

  7. McLean, W., Thomée, V.: Numerical solution of an evolution equation with a positive-type memory term. Austral. J. Math. Soc. Ser. B 35, 23–70 (1993)

    Article  MATH  Google Scholar 

  8. McLean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional order evolution equation. IMA J. Numer. Anal. 30, 208–230 (2010). doi:10.1093/imanum/drp004

    Article  MATH  MathSciNet  Google Scholar 

  9. Mustapha, K.: An implicit finite difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. (to appear)

  10. Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of postive type. Math. Comput. 78, 1975–1995 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Schädle, A., López-Fernandez, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM Sci. J. Comput. 28, 421–438 (2006)

    Article  MATH  Google Scholar 

  12. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM Numer. J. Anal. 42, 1862–1874 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for anomalous subdiffusion equation. SIAM Numer. J. Anal. 46, 1079–1095 (2008). doi:10.1137/060673114

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William McLean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mustapha, K., McLean, W. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer Algor 56, 159–184 (2011). https://doi.org/10.1007/s11075-010-9379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9379-8

Keywords

Navigation