An approach to the Gummel map by vector extrapolation methods | Numerical Algorithms Skip to main content
Log in

An approach to the Gummel map by vector extrapolation methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The numerical approximation of nonlinear partial differential equations requires the computation of large nonlinear systems, that are typically solved by iterative schemes. At each step of the iterative process, a large and sparse linear system has to be solved, and the amount of time elapsed per step grows with the dimensions of the problem. As a consequence, the convergence rate may become very slow, requiring massive cpu-time to compute the solution. In all such cases, it is important to improve the rate of convergence of the iterative scheme. This can be achieved, for instance, by vector extrapolation methods. In this work, we apply some vector extrapolation methods to the electronic device simulation to improve the rate of convergence of the family of Gummel decoupling algorithms. Furthermore, a different approach to the topological ε-algorithm is proposed and preliminary results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, R.E., Rose, D.J.: Global approximate newton methods. Numer. Math. 37, 279–295 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fichtner, W., Rose, D.J., Bank, R.E.: Semiconductor device simulation. IEEE Trans. Electron Devices 30(9), 1018–1030 (1983)

    Google Scholar 

  3. Brezinski, C., Redivo-Zaglia, M.: Extrapolation methods theory and practice. North-Holland, Amsterdam (1991)

    MATH  Google Scholar 

  4. Brezinski, C.: Généralisation de la transformation de Shanks, de la table de Padé, et de l’ε-algorithme. Calcolo 12, 317–360 (1975)

    Article  MathSciNet  Google Scholar 

  5. Brezinski, C.: Convergence acceleration during the 20th century. J. Comput. Appl. Math. 122, 1–21 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezinski, C., Redivo-Zaglia, M.: Private communication. In: 1st Dolomites Workshop on Constructive Approximation and Applications, Alba di Canazei, Trento (Italy), 8–12 September (2006)

  7. Cabay, S., Jackson L.W.: A polynomial extrapolation method for finding limits and antilimits of vector sequences. SIAM J. Numer. Anal. 13, 734–751 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. de Falco, C.: Quantum Corrected Drift-Diffusion Models and Numerical Simulation of Nanoscale Semiconductor Devices, Ph.D. thesis, MOX, Politecnico di Milano, Italy (2005)

  9. Eddy, R.P.: Extrapolation to the limit of a vector sequence. In: Wang, P.C.C. (ed.) Information Linkage Between Applied Mathematics and Industry, pp. 387–396. Academic, New York (1979)

    Google Scholar 

  10. Guerrieri, R., Rudan, M., Ciampolini, P., Baccarini, G.: Vectorial convergence acceleration techniques in semiconductor device analysis. Proceedings of the NASECODE IV Conference, pp. 293–298. Boole Press, Dublin (1985)

    Google Scholar 

  11. Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices 11, 455–565 (1964)

    Google Scholar 

  12. Jaschke, L.: Preconditioned Arnoldi Methods for Systems of Nonlinear Equations. Ph.D. thesis, Swiss Federal Institute of Technology Zurich (2003)

  13. Jbilou, K., Sadok, H.: Some results about vector extrapolation methods and related fixed-point iterations. J. Comput. Appl. Math. 36, 385–398 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jbilou, K., Sadok, H.: Vector extrapolation methods. Applications and numerical comparison. J. Comput. Appl. Math. 122, 149–165 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jerome, J.W.: Analysis of Charge Transport. Springer Verlag, New York (1996)

    Google Scholar 

  16. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer-Verlag, Berlin (1990)

    MATH  Google Scholar 

  17. Mesina, M.: Convergence acceleration for the iterative solution of x = Ax + f. Comput. Methods Appl. Mech. Eng. 10, 165–173 (1977)

    Article  MathSciNet  Google Scholar 

  18. Moore, G.: Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85 (1998)

    Article  Google Scholar 

  19. Scharfetter, D.L., Gummel, H.K.: Large signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 161, 64–77 (1969)

    Google Scholar 

  20. Schilders, W.H.A., Gough, P.A., Whight, K.: Extrapolation techniques for improved convergence in semiconductor device simulation. Proceedings of the NASECODE VIII Conference, Boole Press, Dublin (1992)

    Google Scholar 

  21. Shanks, D.: Non linear transformation of divergent and slowly convergent sequences. J. Math. Phys. 34, 1–42 (1955)

    MathSciNet  Google Scholar 

  22. Sidi, A.: Extrapolation vs. projection methods for linear system of equations. J. Comput. Appl. Math. 22, 71–88 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Smith, D.A., Ford, W.F., Sidi, A.: Extrapolation methods for vector sequences. SIAM Review 29, 199–233 (1987); Correction. SIAM Rev. 30, 623–624 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1981)

    Google Scholar 

  25. Van Roosbroeck, W.V.: Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29, 560–607 (1950)

    Google Scholar 

  26. Wynn, P.: On a device for computing the e m (s n ) transformation. MTAC 10, 91–96 (1956)

    MATH  MathSciNet  Google Scholar 

  27. Wynn, P.: Acceleration techniques for iterated vector an matrix problems. Math. Comput. 16, 301–322 (1962)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosaria Russo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertelle, R., Russo, M.R. An approach to the Gummel map by vector extrapolation methods. Numer Algor 45, 331–343 (2007). https://doi.org/10.1007/s11075-007-9101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9101-7

Keywords