Simulations of flow-like landslides invading urban areas: a cellular automata approach with SCIDDICA | Natural Computing Skip to main content
Log in

Simulations of flow-like landslides invading urban areas: a cellular automata approach with SCIDDICA

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Different methodologies are used for modelling flow-like landslides. A common critical point concerns the flooding into town areas, which cannot be assimilated straight to a morphology, especially, when the urban tissue is very irregular with narrow streets and odd setting of buildings, so that discretization processes of approximating numerical methods have to be carefully examined in their limits. A semi-empirical approach by the computational paradigm of cellular automata is here considered with SCIDDICA, a competitive (related to PDE approach) cellular automata model for 3-dimensions simulation of flow-like landslides. This paper presents innovations to the transition function of SCIDDICA-SS2, which manage opportunely building data in the cells corresponding to the urban tissue. The novelties of the transition function need a theorem, here demonstrated which regards the Algorithm of Minimization of Differences in the new context of inhomogeneous cells. This progress permits to simulate the complete evolution of landslides, from the detachment area to its exhaustion almost on the same precision level. This is an advantage for hazard and risk analyses in threatened zones. Improved SCIDDICA-SS2 was applied successfully to all the well-known 2009 debris flows of Giampilieri Superiore (Sicily) also in comparison with simulation results of the previous versions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Arai K, Basuki A (2010) Simulation of hot mudflow disaster with cell automaton and verification with satellite imagery data. Int Arch Photogramm Remote Sens Spat Inf Sci 38(part 8):237–242

    Google Scholar 

  • Ardizzone F, Basile G, Cardinali M et al (2012) Landslide inventory map for the Briga and the Giampilieri catchments, NE Sicily, Italy. J Maps 8(2):176–180

    Article  Google Scholar 

  • Avolio MV, Lupiano V, Mazzanti P, Di Gregorio S (2008) Modelling combined subaerial-subaqueous flow-like landslides by cellular automata. In: Umeo H, Morishita S, Nishinari K, Komatsuzaki T, Bandini S (eds) Cellular automata, LNCS, vol 5191. Springer, Berlin, pp 329–336

    Chapter  Google Scholar 

  • Avolio MV, Di Gregorio S, Spataro W, Trunfio G (2012) A Theorem about the algorithm of minimization of differences for multicomponent cellular automata. In: Sirakoulis G, Bandini S (eds) Cellular automata, LNCS, vol 7495. Springer, Berlin, pp 289–298

    Chapter  Google Scholar 

  • Avolio MV, Di Gregorio S, Lupiano V, Mazzanti P (2013) SCIDDICA-SS3: a new version of Cellular Automata model for simulating fast moving landslides. J Supercomput 65(2):682–696

    Article  Google Scholar 

  • Avolio MV, Errera A, Lupiano V, Mazzanti P, Di Gregorio S (2017) A cellular automata model for snow avalanches. J Cell Automata 12(5):309–332

    MathSciNet  MATH  Google Scholar 

  • Barca D, Di Gregorio S, Nicoletta F, Sorriso-Valvo M (1987) Flow-type landslide modelling by Cellular Automata. In: Proceedings of AMS interbational congress on modelling and simulation, Cairo, Egypt, pp 3–7

  • Barpi F, Borri-Brunetto M, Veneri LD (2007) Cellular-automata model for dense-snow avalanches. J Cold Reg Eng 21(4):121–140

    Article  Google Scholar 

  • Calidonna CR, Di Gregorio S, Gullace F, Gullì D, Lupiano V, Simos T, Tsitouras C (2016) Rusica initial implementations: simulation results of sandy shore evolution in Porto Cesareo, Italy. In: AIP conference proceedings, vol 1738. AIP Publishing, p 480103. doi:10.1063/1.4952339

  • Canuti P, Casagli N, Catani F, Falorni G (2002) Modeling of the Guagua Pichincha Volcano (Ecuador) lahars. Phys Chem Earth A B C 27(36):1587–1599

    Article  Google Scholar 

  • Crisci GM, Di Gregorio S, Rongo R, Spataro W (2005) PYR: a cellular automata model for pyroclastic flows and application to the 1991 Mt. Pinatubo eruption. Future Gener Comput Syst 21(7):1019–1032

    Article  MATH  Google Scholar 

  • Crisci GM, Iovine G, Di Gregorio S, Lupiano V (2008) Lava-flow hazard on the SE flank of Mt. Etna (southern Italy). J Volcanol Geoth Res 177(4):778–796

    Article  Google Scholar 

  • Crisci GM, Avolio MV, Behncke B, D’Ambrosio D, Di Gregorio S, Lupiano V, Neri M, Rongo R, Spataro W (2010) Predicting the impact of lava flows at Mount Etna, Italy. J Geophys Res Solid Earth 115(B4):1–14

    Article  Google Scholar 

  • D’Ambrosio D, Di Gregorio S, Gabriele S, Gaudio R (2001) A cellular automata model for soil erosion by water. Phys Chem Earth B 26(1):33–39

    Article  Google Scholar 

  • D’Ambrosio D, Iovine G, Lupiano V, Rongo R, Spataro W, Bongolan VP (2013a) Non-uniform grid-based susceptibility evaluations: an application to flow-type phenomena at Mount Etna. Rendiconti Online Della Società Geologica Italiana 24:79–81

    Google Scholar 

  • D’Ambrosio D, Spataro W, Rongo R, Iovine G (2013b) Genetic algorithms, optimization, and evolutionary modeling. In: JF Shroder, ACW Baas (eds) Treatise on geomorphology. Academic Press, Cambridge, pp 74–97. doi:10.1016/B978-0-12-374739-6.00033-6

  • Di Gregorio S, Serra R (1999) An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Gener Comput Syst 16(2):259–271

    Article  Google Scholar 

  • Hungr O (2009) Numerical modelling of the motion of rapid, flow-like landslides for hazard assessment. KSCE J Civ Eng 13(4):281–287

    Article  Google Scholar 

  • Iovine G, Di Gregorio S, Sheridan MF, Miyamoto H (2007) Modelling, computer-assisted simulations, and mapping of dangerous phenomena for hazard assessment. Environ Model Softw 22(10):1389–1391

    Article  Google Scholar 

  • Lupiano V, Avolio M, Di Gregorio S, Peres D, Stancanelli L (2014) Simulation of 2009 debris flows in the Peloritani mountains area by SCIDDICA-SS3. In: Proceeding of 7th WSEAS international conference on engineering mechanics, structures, engineering geology, Salerno (Italy), pp 53–61, ISBN: 978-960-474-376-6

  • Lupiano V, Avolio MV, Anzidei M, Crisci GM, Di Gregorio S (2015a) Susceptibility assessment of subaerial (and/or) subaqueous debris flows in archaeological sites, using a cellular model. In: Engineering geology for society and territory. vol 8, pp 405–408. Springer, doi: 10.1007/978-3-319-09408-3_70

  • Lupiano V, Machado G, Crisci GM, Di Gregorio S (2015b) A modelling approach with macroscopic Cellular Automata for hazard zonation of debris flows and lahars by computer simulations. Int J Geol 9:35–46. ISSN: 1998-4499

  • Lupiano V, Peres D, Avolio M, Cancelliere A, Foti E, Spataro W, Stancanelli L, Di Gregorio S (2015c) Use of the SCIDDICA-SS3 model for predictive mapping of debris flow hazard: an example of application in the Peloritani mountains area. In: Proceedings of the international conference on parallel and distributed processing techniques and applications (PDPTA), pp 625–631

  • Lupiano V, Machado G, Crisci GM, Di Gregorio S (2016) Simulations of debris/mud flows invading urban areas: a cellular automata approach with SCIDDICA. In: El Yacoubi S, Wąs J, Bandini S (eds) Cellular automata, LNCS, vol 9863. Springer, Berlin, pp 291–302

    Chapter  Google Scholar 

  • Machado G, Lupiano V, Avolio M, Gullace F, Di Gregorio S (2015a) A Cellular model for secondary lahars and simulation of cases in the Vascún Valley, Ecuador. J Comput Sci 11:289–299

    Article  Google Scholar 

  • Machado G, Lupiano V, Crisci GM, Di Gregorio S (2015b) LLUNPIY preliminary extension for simulating primary lahars application to the 1877 cataclysmic event of Cotopaxi Volcano. SIMULTECH 2015:367–376. doi:10.5220/0005542903670376

    Google Scholar 

  • Mazzanti P, Bozzano F, Avolio MV, Lupiano V, Di Gregorio S (2010) 3D numerical modelling of submerged and coastal landslide propagation. In: Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences IV; Advances in natural and technological hazards research, vol 28. Springer, Dordrecht, pp 127–139. doi:10.1007/978-90-481-3071-9

  • O’Brien JS, Julien PJ (1988) Laboratory analysis of mudflow properties. Journal of Hydraulic Engineering, ASCE 114(8):877–887

    Article  Google Scholar 

  • Salles T, Lopez S, Cacas M, Mulder T (2007) Cellular Automata model of density currents. Geomorphology 88(1):1–20

    Article  Google Scholar 

  • Stancanelli L, Foti E (2015) A comparative assessment of two different debris flow propagation approaches-blind simulations on a real debris flow event. Nat Hazards Earth Syst Sci 15(4):735–746

    Article  Google Scholar 

  • Stancanelli L, Bovolin V, Foti E (2013) Application of a dilatant-viscous plastic debris flow model in a real complex situation. River, Coastal and Estuarine Morphodynamics: RCEM2011. Tsinghua University Press, Beijing, pp 74–97

    Google Scholar 

  • Valette G, Prevost S, Lucas L, Léonard J (2006) Soda project: a simulation of soil surface degradation by rainfall. Comput Graph 30(4):494–506

    Article  Google Scholar 

  • Vanwalleghem T, Jiménez-Hornero F, Giráldez J, Laguna A (2010) Simulation of long term soil redistribution by tillage using a cellular automata model. Earth Surf Proc Land 35(7):761–770. doi:10.1002/esp.1923

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Lupiano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lupiano, V., Machado, G.E., Molina, L.P. et al. Simulations of flow-like landslides invading urban areas: a cellular automata approach with SCIDDICA. Nat Comput 17, 553–568 (2018). https://doi.org/10.1007/s11047-017-9632-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-017-9632-3

Keywords

Navigation