$$\varvec{\varDelta }$$ – $$\varvec{\varSigma }$$ noise-shaping in 3-D space–time for 2-D wideband antenna array receivers | Multidimensional Systems and Signal Processing Skip to main content
Log in

\(\varvec{\varDelta }\)\(\varvec{\varSigma }\) noise-shaping in 3-D space–time for 2-D wideband antenna array receivers

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A novel delta–sigma (\(\varDelta \)\(\varSigma \)) modulation method is proposed for extending noise-shaping to three dimensions: 2-D space and time. We show that a spatially-oversampled \(N_{x}\times N_{y}\) antenna array coupled to a noise-shaped low-noise amplifier and analog-to-digital converter can diminish in-band additive noise and distortion by shaping the multi-dimensional spectrum towards higher spatial frequencies that are outside the space–time regions of support of all possible propagating electromagnetic waves. Detailed circuit simulations in a 65 nm CMOS process with wideband RF inputs at a center frequency of 4 GHz confirm that the proposed 3-D noise-shaping approach provides significant improvements in noise figure and resolution for 2-D array receivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agathoklis, P., & Bruton, L. (1983). Practical-BIBO stability of N-dimensional discrete systems. IEEE Proceedings of Electronic Circuits and Systems, 130(6), 236–242.

    Article  Google Scholar 

  • Belostotski, L., Veidt, B., Warnick, K. F., & Madanayake, A. (2015). Low-noise amplifier design considerations for use in antenna arrays. IEEE Transactions on Antennas and Propagation, 63(6), 2508–2520.

    Article  MathSciNet  MATH  Google Scholar 

  • Boser, B. E., & Wooley, B. A. (1988). The design of sigma-delta modulation analog-to-digital converters. IEEE Journal of Solid-State Circuits, 23(6), 1298–1308.

    Article  Google Scholar 

  • Bruton, L. (2003). Three-dimensional cone filter banks. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(2), 208–216.

    Article  Google Scholar 

  • Bruton, L., & Bartley, N. (1983). Highly selective three-dimensional recursive beam filters using intersecting resonant planes. IEEE Transactions on Circuits and Systems, 30(3), 190–193.

    Article  Google Scholar 

  • Friis, H. (1944). Noise figure of radio receivers. IEEE Journal of Selected Topics in Quantum Electronics, 32(7), 419–422.

    Google Scholar 

  • Garuda, C., Cui, X., Lin, P., Doo, S., Zhang, P., & Ismail, M. (2005). A 3-5 GHz fully differential CMOS LNA with dual-gain mode for wireless UWB applications.

  • Godara, L. C. (1997). Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proceedings of the IEEE, 85(8), 1195–1245.

    Article  Google Scholar 

  • Hajimiri, A., & Lee, T. H. (1999). Design issues in CMOS differential LC oscillators. IEEE Journal of Solid-State Circuits, 34(5), 717–724.

    Article  Google Scholar 

  • Handagala, S., Madanayake, A., Belostotski, L., & Bruton, L. T. (2016). Delta-sigma noise shaping in 2D space-time for uniform linear aperture array receivers. In IEEE Moratuwa engineering research conference (MERCon).

  • Hartle, J. B. (2003). Gravity: An introduction to Einstein’s general relativity (Vol. 1). London: Pearson.

    Google Scholar 

  • Haus, H. (2000). Noise figure definition valid from RF to optical frequencies. IEEE Journal of Selected Topics in Quantum Electronics, 6(2), 240–247.

    Article  Google Scholar 

  • IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters. (2011). IEEE Std 1241-2010.

  • Jeffs, B. D., Warnick, K. F., Landon, J., Waldron, J., Jones, D., Fisher, J. R., et al. (2008). Signal processing for phased array feeds in radio astronomical telescopes. IEEE Journal of Selected Topics in Signal Processing, 2(5), 635–646.

    Article  Google Scholar 

  • Kang, S., Choi, B., & Kim, B. (2003). Linearity analysis of CMOS for RF application. IEEE Transactions on Microwave Theory and Techniques, 51(3), 972–977.

    Article  Google Scholar 

  • Kildal, P. S., Vosoogh, A., & Maci, S. (2016). Fundamental directivity limitations of dense array antennas: A numerical study using hannan’s embedded element efficiency. IEEE Antennas and Wireless Propagation Letters, 15, 766–769.

    Article  Google Scholar 

  • Krishnaswamy, H., & Zhang, L. (2016). Analog and RF interference mitigation for integrated MIMO receiver arrays. Proceedings of the IEEE, 104(3), 561–575.

    Article  Google Scholar 

  • Liyanage, N., Bruton, L. T., & Agathoklis, P. (2009). On the attenuation of interference and mutual coupling in antenna arrays using 3D space-time filters. In: IEEE Pacific rim conference on communications, computers and signal processing, 2009. PacRim (pp. 146–151).

  • Madanayake, A., Akram, N., Mandal, S., Liang, J., & Belostotski, L. (2017). Improving ADC figure-of-merit in wideband antenna array receivers using multidimensional space-time \(\varSigma -\varDelta \) multiport circuits. In: 2017 10th International workshop on multidimensional (nD) systems (nDS), (pp. 1–6).

  • Madanayake, A., & Bruton, L. T. (2008). A speed-optimized systolic array processor architecture for spatio-temporal 2-D IIR broadband beam filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(7), 1953–1966.

    Article  MathSciNet  Google Scholar 

  • Nguyen, T.-K., Kim, C.-H., Ihm, G.-J., Yang, M.-S., & Lee, S.-G. (2004). CMOS low-noise amplifier design optimization techniques. IEEE Transactions on Microwave Theory and Techniques, 52(5), 1433–1442.

    Article  Google Scholar 

  • Nikoofard, A., Liang, J., Twieg, M., Handagala, S., Madanayake, A., Belostotski, L., & Mandal, S. (2017). Low-complexity N-port ADCs using 2-D \(\varDelta \)-\(\varSigma \) noise-shaping for N-element array receivers. In 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS) (pp. 301–304).

  • Palguna, D., Love, D., Thomas, T., & Ghosh, A. (2016). Millimeter wave receiver design using low precision quantization and parallel \(\varSigma \varDelta \) architecture. IEEE Transactions on Wireless Communications, 15(10), 6556–6569.

    Article  Google Scholar 

  • Perley, R. A., Schwab, F. R., & Bridle, A. H. (1989). Synthesis imaging in radio astronomy. San Francisco, CA: Astronomical Society of the Pacific.

    Google Scholar 

  • Razavi, B. (2009). Design of millimeter-wave CMOS radios: A tutorial. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(1), 4–16.

    Article  MathSciNet  Google Scholar 

  • Sansen, W. (1999). Distortion in elementary transistor circuits. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 46(3), 315–325.

    Article  Google Scholar 

  • Walden, R. H. (1999). Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communications, 17(4), 539–550.

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Handagala, S., Madanayake, A., Belostotski, L., & Mandal, S. (2017) N-port LNAs for mmW array processors using 2-D spatio-temporal \(\varDelta \)-\(\varSigma \) noise-shaping. In 2017 IEEE 60th International midwest symposium on circuits and systems (MWSCAS) (pp. 1473–1476).

  • Zhang, L., Natarajan, A., & Krishnaswamy, H. (2016). Scalable spatial notch suppression in spatio-spectral-filtering MIMO receiver arrays for digital beamforming. IEEE Journal of Solid-State Circuits, 51(12), 3152–3166.

    Article  Google Scholar 

Download references

Acknowledgements

This project is sponsored by the National Science Foundation under Grants ECCS-1730946 and ECCS-1731722.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project is sponsored by the National Science Foundation under Grants ECCS-1730946 and ECCS-1731722.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liang, J., Belostotski, L. et al. \(\varvec{\varDelta }\)\(\varvec{\varSigma }\) noise-shaping in 3-D space–time for 2-D wideband antenna array receivers. Multidim Syst Sign Process 30, 1609–1631 (2019). https://doi.org/10.1007/s11045-018-0620-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0620-2

Keywords

Navigation