Spatiotemporal features of electrocardiogram for biometric recognition | Multidimensional Systems and Signal Processing Skip to main content
Log in

Spatiotemporal features of electrocardiogram for biometric recognition

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The use of electrocardiograms (ECGs) as a modality for biometric recognition has received increasing interest. Whereas ECGs are capable of providing a complete insight into the spatiotemporal nature of the cardiac electrical activity, the large volume of multi-lead recordings makes it challenging to elicit discriminant information therein. Typically, for biometric data to be of use in a recognition task, feature extraction must be performed to remove redundant information and noise from the data and enable the subsequent matching algorithms to work efficiently. In this paper, several feature extraction algorithms for ECG biometric recognition are proposed. Based on the idea of block projection, the proposed algorithms allow the temporal information used by existing single-lead-based techniques to be exploited while taking advantage of the structural information contained in multi-lead ECGs. Besides, these algorithms are applicable to ECGs regardless of their number of leads even to single-lead ones. Like most nonfiducial approaches, they require only one fiducial point (i.e., R peaks) to be determined. Detailed experiments with real data are presented to illustrate the performance of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agrafioti, F., Rogers, E. S., & Hatzinakos, D. (2008). Fusion of ECG sources for human identification. In Proceedings of the international symposium on communications, control and signal processing (pp. 1542–1547).

  • Biel, L., Pettersson, O., Philipson, L., & Wide, P. (2001). ECG analysis: A new approach in human identification. IEEE Transactions on Instrumentation and Measurement, 50, 808–812.

    Article  Google Scholar 

  • Chan, A. D. C., Badre, M. M. H. A., & Badee, V. (2008). Wavelet distance measure for person identification using electrocardiograms. IEEE Transactions on Instrumentation and Measurement, 57, 248–253.

    Article  Google Scholar 

  • Chazal, P. D., Heneghan, C., Sheridan, E., Reilly, R., Nolan, P., & O’Malley, M. (2003). Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea. IEEE Transactions on Biomedical Engineering, 50, 686–696.

    Article  Google Scholar 

  • Clifford, G. D., Azuaje, F., & McSharry, P. E. (2006). Advanced Methods and Tools for ECG Data Analysis. Norwood, MA: Artech House.

    Google Scholar 

  • Coutinho, D. P., Fred, A. L. N., & Figueiredo, M. A. T. (2010). One-lead ECG-based personal identification using Ziv-Merhav cross parsing. In Proceedings of the international conference on pattern recognition (pp. 3858–3861).

  • Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification (2nd ed.). New York, NY: Wiley.

    MATH  Google Scholar 

  • Fang, S.-C., & Chan, H.-L. (2009). Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space. Pattern Recognition, 42, 1824–1831.

    Article  Google Scholar 

  • Fatemian, S. Z., Edward, S., Rogers, S. R., & Hatzinakos, D. (2009). A new ECG feature extraction for biometric recognition. In Proceednigs of the international conference on digital signal processing (pp. 1–6).

  • Fayn, J., & Rubel, P. (2010). Toward a personal health society in cardiology. The IEEE Transactions on Information Technology in Biomedicine, 14, 401–409.

    Article  Google Scholar 

  • Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C. H., Mark, R. G., et al. (2000). Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation, 101, 215–220.

    Google Scholar 

  • Gutta, S., & Cheng, Q. (2016). Joint feature extraction and classifier design for ECG-based biometric recognition. IEEE Journal of Biomedical and Health Informatics, 20, 460–468.

    Article  Google Scholar 

  • HealthWatch. The Master Caution. https://healthwatchtech.com/mastercaution/.

  • Hoekema, R., Uijen, G. J. H., & van Oosterom, A. (2001). Geometrical aspects of the interindividual variability of multilead ECG recordings. IEEE Transactions on Biomedical Engineering, 48, 551–559.

    Article  Google Scholar 

  • Irvine, J. M., Israel, S. A., Scruggs, W. T., & Worek, W. J. (2008). eigenPulse: Robust human identification from cardiovascular function. Pattern Recognition, 41, 3427–3435.

    Article  Google Scholar 

  • Israel, S. A., Irvine, J. M., Cheng, A., Wiederhold, M. D., & Wiederhold, B. K. (2005). ECG to identify individuals. Pattern Recognition, 41, 3427–3435.

    Google Scholar 

  • Jain, A. K., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14, 4–20.

    Article  Google Scholar 

  • Levkov, C., Mihov, G., Ivanov, R., Daskalov, I., Christov, I., & Dotsinsky, I. (2005). Removal of power-line interference from the ECG: A review of the subtraction procedure. BioMedical Engineering Online, 4, 1–18.

    Article  Google Scholar 

  • Odinaka, I., Lai, P.-H., Kaplan, A. D., O’Sullivan, J. A., Sirevaag, E. J., & Sirevaag, J. W. (2012). ECG biometric recognition: A comparative analysis. The IEEE Transactions on Information Forensics and Security, 7, 1812–1824.

    Article  Google Scholar 

  • Pan, J., & Tompkins, W. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32, 230–236.

    Article  Google Scholar 

  • Rezgui, D., & Lachiri, Z. (2016). ECG biometric recognition using SVM-based approach. IEEJ Transactions on Electrical and Electronic Engineering, 11, 94–100.

    Article  Google Scholar 

  • Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42, 59–66.

    Article  Google Scholar 

  • Shen, T. W., Tompkins, W. J., & Hu, Y. H. (2002). One-lead ECG for identity verification. In Proceedings of the second joint EMBS/BMES conference (pp. 62–63).

  • Singh, Y. N., & Singh, S. K. (2012). Evaluation of electrocardiogram for biometric authentication. Journal of Information Security and Applications, 3, 39–48.

    Article  Google Scholar 

  • Singh, Y. N., & Singh, S. K. (2013). Identifying individuals using eigenbeat features of electrocardiogram. Journal of Engineering, 2013, 8.

    Google Scholar 

  • Sörnmo, L., & Laguna, P. (2006). Bioelectrical Signal Processing in Cardiac and Neurological Applications. London: Academic Press.

    Google Scholar 

  • Surawicz, B., & Knilans, T. K. (2008). Chou’s Electrocardiography in Clinical Practice Adult and Pediatric (6th ed.). Philadelphia, PA: Saunders Elsevier.

    Google Scholar 

  • Swets, D. L., & Weng, J. J. (1996). Using discriminant eigenfeatures for image retrieval. The IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 831–836.

    Article  Google Scholar 

  • Unar, J. A., Seng, W. C., & Abbasi, A. (2014). A review of biometric technology along with trends and prospects. Pattern Recognition, 47, 2673–2688.

    Article  Google Scholar 

  • van Oosterom, A. (1999). The use of the spatial covariance in computing pericardial potentials. IEEE Transactions on Biomedical Engineering, 46, 778–787.

    Article  Google Scholar 

  • Viskin, S. (2009). The QT interval: Too long, too short or just right. Heart Rhythm, 6, 711–715.

    Article  Google Scholar 

  • VitalSigns. The Handheld Single Lead ECG Device. http://www.vsigntek.com/review-of-several-portable-ecg-device/.

  • Wahabi, S., Pouryayevali, S., Hari, S., & Hatzinakos, D. (2014). On evaluating ECG biometric systems: Session-dependence and body posture. The IEEE Transactions on Information Forensics and Security, 9, 2002–2013.

    Article  Google Scholar 

  • Wang, Y., Agrafioti, F., Hatzinakos, D., & Plataniotis, K. N. (2008). Analysis of human electrocardiogram for biometric recognition. EURASIP Journal on Advances in Signal Processing, 2008, 11.

    MATH  Google Scholar 

  • Wayman, J. L. (2001). Fundamentals of biometric authentication technologies. International Journal of Image and Graphics, 1, 93–113.

    Article  Google Scholar 

  • Widjaja, D., Varon, C., Dorado, A. C., Suykens, J. A. K., & Huffel, S. V. (2012). Application of kernel principal component analysis for single-leadecg-derived respiration. IEEE Transactions on Biomedical Engineering, 59, 1169–1176.

    Article  Google Scholar 

  • Wu, S. C., & Chen, P. T. (2015). Block projection based feature extraction for biometric recognition with multi-lead ECG. International Journal of Pharmacy and Biological Sciences, 4, 97–100.

    Google Scholar 

  • Wübbeler, G., Stavridis, M., Bousseljot, D. K. R.-D., & Elster, C. (2007). Verification of humans using the electrocardiogram. Pattern Recognition, 28, 1172–1175.

    Article  Google Scholar 

  • Yang, J., Zhang, D., Frangi, A. F., & Yang, J.-Y. (2004). Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 131–137.

    Article  Google Scholar 

  • Ye, C., Coimbra, M., & Kumar, B. (2010). Investigation of human identification using two-lead electrocardiogram ECG signals. In Proceedings of the IEEE international conference on biometrics: Theory applications and systems (pp. 1–8).

Download references

Acknowledgements

The authors would like to thank the financial support of the Ministry of Science and Technology of Taiwan, R.O.C. for the project under the Contract No. MOST 103-2218-E-007-013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Chi Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SC., Chen, PT. & Hsieh, JH. Spatiotemporal features of electrocardiogram for biometric recognition. Multidim Syst Sign Process 30, 989–1007 (2019). https://doi.org/10.1007/s11045-018-0593-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0593-1

Keywords

Navigation