Quantum image edge extraction based on classical robinson operator | Multimedia Tools and Applications Skip to main content
Log in

Quantum image edge extraction based on classical robinson operator

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a quantum image edge extraction technique is developed with the help of the classical Robinson operator. A novel enhanced quantum representation (NEQR) technique is used to represent the quantum image. A quantum methodology is proposed to implement the Robinson masks of eight directions and perform convolution operations with the quantum shifted image sets. In this paper, a quantum parallel computation is used for evaluating gradients of the image intensity of all pixels, and a threshold-based quantum black box is designed to classify the points as edge points. The computational complexity of the proposed scheme for an image of size 2n × 2n is O(n2 + 2q+ 3). However, we also carry out the design and simulation analysis of our proposed algorithm and finally compare our results with some state-of-art image edge extraction algorithms in terms of PSNR (peak signal to noise ratio), MSE (mean square error) and execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cai Y, Lu X, Jiang N (2018) A survey on quantum image processing. Chin J Electron 27(4):718–727

    Article  Google Scholar 

  2. Chakraborty S, Mandal SB, Shaikh SH (2018) Quantum image processing: challenges and future research issues. Int J Inf Technol, 1–15

  3. Chakraborty S, Mandal SB, Shaikh SH (2018) Design and implementation of a multivalued quantum circuit for threshold based color image segmentation. Intell Decis Technol 12(2):251–264

    Article  Google Scholar 

  4. Chakraborty S, Shaikh SH, Chakrabarti A, Ghosh R (2020) An Image Denoising Technique using Quantum Wavelet Transform. Int J Theor Phys 59(11):3348–3371

    Article  MathSciNet  Google Scholar 

  5. Chakraborty S, Shaikh SH, Chakrabarti A, Ghosh R (2020) A hybrid quantum feature selection algorithm using a quantum inspired graph theoretic approach. Appl Intell 50(6):1775–1793

    Article  Google Scholar 

  6. Chakraborty S, Shaikh SH, Mandal SB, Ghosh R, Chakrabarti A (2019) A study and analysis of a discrete quantum walk-based hybrid clustering approach using d-regular bipartite graph and 1D lattice. Int J Quantum Inf 17(02):1950016

    Article  MathSciNet  Google Scholar 

  7. Chetia R, Boruah SMB, Sahu PP (2021) Quantum image edge detection using improved Sobel mask based on NEQR. Quantum Inf Process 20(1):1–25

    Article  MathSciNet  Google Scholar 

  8. El Amraoui A, Masmoudi L, Ez-Zahraouy H, El Amraoui Y (2016) Quantum edge detection based on SHANNON entropy for medical images. In: 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA). IEEE, pp 1–6

  9. Fan P, Zhou RG, Hu W (2019) Quantum image edge extraction based on classical Sobel operator for NEQR. Quantum Inf Process 18(1):24

    Article  Google Scholar 

  10. Fan P, Zhou RG, Hu WW, Jing N (2019) Quantum image edge extraction based on Laplacian operator and zero-cross method. Quantum Inf Process 18(1):27

    Article  Google Scholar 

  11. Fu X, Ding M, Sun Y, Chen S (2009) A new quantum edge detection algorithm for medical images. Proc SPIE 7497:749724

    Article  Google Scholar 

  12. Fu X, Ding M, Sun Y, Chen S (2009) A new quantum edge detection algorithm for medical images. In: MIPPR 2009: Medical imaging, parallel processing of images, and optimization techniques. International Society for Optics and Photonics, vol 7497, p 749724

  13. Islam MS, Rahman MM, Begum Z et al (2009) Low cost quantum realization of reversible multiplier circuit. Inf Technol J 8(2):208–213

    Article  Google Scholar 

  14. Jamal AT, Ishak AB, Abdel-Khalek S (2021) Tumor edge detection in mammography images using quantum and machine learning approaches

  15. Le PQ, Iliyasu AM, Dong F, Hirota K (2010) Fast geometric transformations on quantum images. Int J Appl Math 40(3):113–123

  16. Le PQ, Iliyasu AM, Dong F et al (2011) Fast geometric transformations on quantum images. Int J Appl Math 40(3):113–123

  17. Li P, Shi T, Lu A, Wang B (2020) Quantum implementation of classical Marr–Hildreth edge detection. Quantum Inf Process 19(2):1–26

    Article  MathSciNet  Google Scholar 

  18. Lu Z, Wang X, Shang J, Luo Z, Sun C, Wu G (2019) A multimedia image edge extraction algorithm based on flexible representation of quantum. Multimed Tools Appl 78(17):24067–24082

    Article  Google Scholar 

  19. Malik S, Kumar T (2016) Comparative analysis of edge detection between gray scale and color Image. Communications on Applied Electronics 5(2):38–43. https://doi.org/10.5120/cae2016652230

    Article  Google Scholar 

  20. McMahon D (2008) Quantum computing explained. Wiley-IEEE Computer Society, ISBN: 978-0-470-09699-4, 352 pages

  21. Robinson GS (1977) Edge detection by compass gradient masks. Comput Graph Image Process 6(5):492–501

    Article  Google Scholar 

  22. Simangsong PBN (2020) Image Edge Detection using Robinson Operator. INFOKUM 8(2, Juni):31–36

    Google Scholar 

  23. Thapliyal H, Ranganathan N (2011) A new design of the reversible subtractor circuit. Nanotechnology 117:1430–1435

    Google Scholar 

  24. Tseng C, Hwang T (2003) Quantum digital image processing algorithms. In: Proceedings of the 16th IPPR conference on computer vision, graphics and image processing, pp 827–834

  25. Xu P, He Z, Qiu T, Ma H (2020) Quantum image processing algorithm using edge extraction based on Kirsch operator. Opt Express 28(9):12508–12517

    Article  Google Scholar 

  26. Yan F, Iliyasu AM, Venegas-Andraca SE (2016) A survey of quantum image representations. Quantum Inf Process 15(1):1–35

    Article  MathSciNet  Google Scholar 

  27. Yan F, Venegas-Andraca SE (2020) Quantum Image Representations & Understanding. Springer, Singapore, pp 19–48

    MATH  Google Scholar 

  28. Yao XW, Wang H, Liao Z, Chen MC, Pan J, Li J, Zheng W (2017) Quantum image processing and its application to edge detection: theory and experiment. Phys Rev X 7(3):031041

    Google Scholar 

  29. Zhang Y, Lu K, Gao Y (2015) QSobel: a novel quantum image edge extraction algorithm. Sci China Inf Sci 58(1):1–13

    MATH  Google Scholar 

  30. Zhang Y, Lu K, Xu K, Gao Y, Wilson R (2015) Local feature point extraction for quantum images. Quantum Inf Process 14(5):1573–1588

    Article  MathSciNet  Google Scholar 

  31. Zhou RG, Hu W, Fan P (2017) Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf Process 16(9):212

    Article  MathSciNet  Google Scholar 

  32. Zhou RG, Yu H, Cheng Y, Li FX (2019) Quantum image edge extraction based on improved Prewitt operator. Quantum Inf Process 18(9):261

    Article  Google Scholar 

Download references

Acknowledgment

No research funding has been received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Chakraborty.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Shaikh, S.H., Chakrabarti, A. et al. Quantum image edge extraction based on classical robinson operator. Multimed Tools Appl 81, 33459–33481 (2022). https://doi.org/10.1007/s11042-022-12627-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12627-3

Keywords

Navigation