Abstract
Placental maturity grading (PMG) is quite essential to assess fetal growth and maternal health. To this date, PMG has mostly relied on the subjective judgment of the clinician, which is time-consuming and may cause wrong estimation due to redundancy and repeatability of the process. To tackle it, we propose an automatic method to stage placental maturity via deep hybrid descriptors based on B-mode ultrasound (BUS) and color Doppler energy (CDE) images. Specifically, convolutional descriptors extracted from multiple deep convolutional neural networks (DCNNs) and hand-crafted features are integrated to get the hybrid descriptors for grading performance boosting. First, different models with various feature layers are combined to obtain hybrid descriptors from images. Second, the transfer learning strategy is also utilized to enhance the grading performance via the deeply represented features. Third, extracted descriptors are encoded by Fisher vector (FV). Finally, we use support vector machine (SVM) as the classifier to grade placental maturity. The experimental results demonstrate that our proposed method could achieve good performance in PMG.
Similar content being viewed by others
References
Bude RO, Rubin JM (1996) Power Doppler sonography. Radiology 200(1):21–23
Burton GJ, Charnock-Jones DS, Jauniaux E (2009) Regulation of vascular growth and function in the human placenta. Reproduction 138(6):895–902
Chang H, Chen Z, Huang Q, Shi J, Li X (2015) Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing 151:632–644
Chen H, Ni D, Qin J, Li S, Yang X, Wang T, Heng PA (2015) Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J Biomed Health Inform 19(5):1627–1636
Chen H, Wu L, Dou Q, Qin J, Li S, Cheng J-Z, Ni D, Heng P-A (2017) Ultrasound standard plane detection using a composite neural network framework. IEEE Transactions on Cybernetics 47(6):1576–1586
Cheng J-Z, Ni D, Chou Y-H, Qin J, Tiu C-M, Chang Y-C, Huang C-S, Shen D, Chen C-M (2016) Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in CT scans. Sci Rep 6:24454
Cimpoi M, Maji S, Vedaldi A (2015) A Deep filter banks for texture recognition and segmentation. In: Proc IEEE CVPR: pp 3828–3836
Cui C, Liu H, Lian T, Nie L, Zhu L, Yin Y (2018) Distribution-oriented aesthetics assessment with semantic-aware hybrid network. IEEE Transactions on Multimedia 21(5):1209–1220
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Royal Statistical Soc 39(1):1–38
D'Hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, Hatle L, Suetens P, Sutherland GR (2000) Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur Heart J Cardiovasc Imaging 1(3):154–170
Dubiel M, Breborowicz GH, Ropacka M, Pietryga M, Maulik D, Gudmundsson S (2005) Computer analysis of three-dimensional power angiography images of foetal cerebral, lung and placental circulation in normal and high-risk pregnancy. Ultrasound Med Biol 31(3):321–327
Elsayes KM, Trout AT, Friedkin AM, Liu PS, Bude RO, Platt JF, Menias CO (2009) Imaging of the placenta: a multimodality pictorial review. RadioGraphics 29(5):1371–1391
Faraki M, Harandi MT, Wiliem A, Lovell BC (2014) Fisher tensors for classifying human epithelial cells. Pattern Recogn 47(7):2348–2359
Goldenberg RL, Gravett MG, Iams J, Papageorghiou AT, Waller SA, Kramer M, Culhane J, Barros F, Conde-Agudelo A, Bhutta ZA, Knight HE, Villar J (2012) The preterm birth syndrome: issues to consider in creating a classification system. Am J Obstet Gynecol 206(2):113–118
Gong Y, Wang L, Guo R, Lazebnik S (2014) Multi-scale orderless pooling of deep convolutional activation features. In: Proc ECCV: pp 392-407
Grannum PAT, Berkowitz RL, Hobbins JC (1979) The ultrasonic changes in the maturing placenta and their relation to fetal pulmonic maturity. Am J Obstet Gynecol 133(8):915–922
Guerriero S, Ajossa S, Lai MP, Risalvato A, Paoletti AM, Melis GB (1999) Clinical applications of colour Doppler energy imaging in the female reproductive tract and pregnancy. Hum Reprod Update 5(5):515–529
Guiot C, Gaglioti P, Oberto M, Piccoli E, Rosato R, Todros T (2008) Is three-dimensional power Doppler ultrasound useful in the assessment of placental perfusion in normal and growth-restricted pregnancies? Ultrasound Obstet Gynecol 31(2):171–176
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proc IEEE CVPR: pp 770-778
Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: proceedings of the IEEE conference on computer vision and pattern recognition: pp 7132-7141
Huang Q, Huang Y, Hu W, Li X (2015) Bezier interpolation for 3-D freehand ultrasound. IEEE Trans Hum Mach Syst 45(3):385–392
Huang Q, Xie B, Ye P, Chen Z (2015) Correspondence - 3-D ultrasonic strain imaging based on a linear scanning system. IEEE Trans Ultrason Ferroelectr Freq Control 62(2):392–400
Jeff D, Yangqing J, Oriol V, Judy H, Ning Z, Eric T, Trevor D (2014) DeCAF: a deep convolutional activation feature for generic visual recognition. In: Proc ICML: pp 647-655
Jégou H, Perronnin F, Douze M, Sánchez J, Pérez P, Schmid C (2012) Aggregating local image descriptors into compact codes. IEEE Trans Pattern Anal Mach Intell 34(9):1704–1716
Kazzi GM, Gross TL, Sokol RJ, Kazzi NJ (1983) Detection of intrauterine growth retardation: a new use for sonographic placental grading. Am J Obstet Gynecol 145(6):733–737
Kellow ZS, Feldstein VA (2011) Ultrasound of the placenta and umbilical cord: a review. Ultrasound Q 27(3):187–197
Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Proc Adv NIPS: pp 1097-1105
Lazebnik S, Schmid C (2006) Ponce J beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proc IEEE CVPR. pp 2169–2178
Lei B, Li W, Yao Y, Jiang X, Tan E-L, Qin J, Chen S, Ni D, Wang T (2017) Multi-modal and multi-layout discriminative learning for placental maturity staging. Pattern Recogn 63:719–730
Lei B, Li X, Yao Y, Li S, Chen S, Zhou Y, Ni D, Wang T (2014) Automatic grading of placental maturity based on LIOP and fisher vector. In: Proc IEEE EMBC, Chicago, pp 4671–4674
Lei B, Tan E-L, Chen S, Li W, Ni D, Yao Y, Wang T (2017) Automatic placental maturity grading via hybrid learning. Neurocomputing 223:86–102
Lei B, Tan E-L, Chen S, Zhuo L, Li S, Ni D, Wang T (2015) Automatic recognition of fetal facial standard plane in ultrasound image via fisher vector. PLoS One 10(5):e0121838
Li W, Yao Y, Ni D, Chen S, Lei B, Wang T (2016) Placental maturity evaluation via feature fusion and discriminative learning. In: Proc IEEE ISBI: pp 783-786
Li X, Yao Y, Ni D, Chen S, Li S, Lei B, Wang T (2014) Automatic staging of placental maturity based on dense descriptor. Biomed Mater Eng 24(6):2821–2829
Linares PA, McCullagh PJ, Black ND (2004) Dornan J feature selection for the characterization of ultrasonic images of the placenta using texture classification. In: Proc IEEE ISBI. pp 1147–1150
Liu L, Shen C, Wang L, Hengel AVD, Wang C (2014) Encoding high dimensional local features by sparse coding based fisher vectors. In: Proc Adv NIPS: pp 1143-1151
Liu Z, Zheng H, Lin S (2009) Application of multi-classification support vector machine in the B-placenta image classification. In: IEEE Int Conf Comput Intell SW Eng: pp 1-4
Long J, Zhang N, Darrell T (2014) do convnets learn correspondence? In: Proc Adv NIPS: pp 1601-1609
Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110
Moran M, Mulcahy C, Daly L, Zombori G, Downey P, McAuliffe FM (2014) Novel placental ultrasound assessment: potential role in pre-gestational diabetic pregnancy. Placenta 35(8):639–644
Mousavian A, Kosecka J (2015) Deep convolutional features for image based retrieval and scene categorization. arXiv:150906033
Ng YH, Yang F, Davis LS (2015) Exploiting local features from deep networks for image retrieval. Proc IEEE CVPR:53–61
Ozcan T, Pressman EK (2008) Imaging of the placenta. Ultrasound Clin 3(1):13–22
Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Transactions on Knowledge Data Engineering 22(10):1345–1359
Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: an astounding baseline for recognition. In: Proc IEEE CVPR: pp 806-813
Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137
Reynolds D (2009) Gaussian mixture models. In: Encyclopedia of Biometrics. Springer, pp 93–105
Ribeiro RT, Marinho RT, Sanches JM (2013) Classification and staging of chronic liver disease from multimodal data. IEEE Trans Biomed Eng 60(5):1336–1344
Sánchez J, Perronnin F, Mensink T, Verbeek J (2013) Image classification with the fisher vector: theory and practice. Int J Comput Vis 105(3):222–245
Sergey I, Christian S (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proc PMLR: pp 448-456
Shi J, Xue Z, Dai Y, Peng B, Dong Y, Zhang Q, Zhang Y (2018) Cascaded multi-column RVFL+ classifier for single-modal neuroimaging-based diagnosis of Parkinson's disease. IEEE Trans Biomed Eng 66(8):2362–2371
Simonyan K, Zisserman A (2014) A very deep convolutional networks for large-scale image recognition. In: Proc IEEE CVPR
Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Proc Adv NIPS: pp 3320-3328
Zheng L, Zhao Y, Wang S, Wang J, Tian Q (2016) Good practice in CNN feature transfer. arXiv:160400133
Zheng W, Zhu X, Wen G, Zhu Y, Yu H, Gan J (2018) Unsupervised feature selection by self-paced learning regularization. Pattern Recogn Lett
Acknowledgments
This work was supported partly by National Key R&D Program of China (No.2016YFC0104700), National Natural Science Foundation of China (Nos.61871274, 61801305 and 81571758), National Natural Science Foundation of Guangdong Province (No. 2017A030313377), Guangdong Pearl River Talents Plan (2016ZT06S220), Medical Scientific Research Foundation of Guangdong Province, China (No. B2018031), Shenzhen Peacock Plan (Nos. KQTD2016053112051497 and KQTD2015033016 104926), and Shenzhen Key Basic Research Project (Nos. JCYJ20180507184647636, JCYJ20170818142347251 and JCYJ20170818 094109846).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lei, B., Jiang, F., Zhou, F. et al. Hybrid descriptor for placental maturity grading. Multimed Tools Appl 79, 21223–21239 (2020). https://doi.org/10.1007/s11042-019-08489-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-019-08489-x