Multi-tracker fusion via adaptive outlier detection | Multimedia Tools and Applications Skip to main content
Log in

Multi-tracker fusion via adaptive outlier detection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In visual tracking task, due to the ubiquitous challenging attributes such as illumination changes, occlusion and target deformation, there hardly exists a tracker that works satisfactorily under various circumstances. To cope with different challenging factors, in this paper, we propose a fusion framework to absorb the strength of different tracking algorithms for robust object tracking. Our approach focuses on the output fusion of different trackers, without knowing their specific details, which makes our framework quite general to incorporate any new tracker. The proposed framework consists of three main steps. First, it measures the pair-wise correlation between different tracker pairs based on their appearance and geometric consistency. Then, we introduce two effective strategies to identify the unreliable trackers by analyzing the computed pair-wise relationships. Through this outlier detection process, our fusion framework adaptively discards the potential failure trackers and weights the rest trackers differently. Finally, the fusion result is derived from weighted combination of the outputs from the reliable group of trackers. Extensive experimental results on the challenging OTB-2013 and OTB-2015 datasets demonstrate the effectiveness of the proposed fusion framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bailer C, Pagani A, Stricker D (2014) A superior tracking approach: building a strong tracker through fusion. In: ECCV

  2. Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr P (2016) Staple: complementary learners for real-time tracking. In: CVPR

  3. Bertinetto L, Valmadre J, Henriques JF, Vedaldi A, Torr PH (2016) Fully-convolutional siamese networks for object tracking. In: ECCV

  4. Bolme DS, Beveridge JR, Draper BA, Lui YM (2010) Visual object tracking using adaptive correlation filters. In: CVPR

  5. Bomze IM (2002) Branch-and-bound approaches to standard quadratic optimization problems. J Glob Optim 22(1-4):17–37

    Article  MathSciNet  Google Scholar 

  6. Choi J, Jin Chang H, Jeong J, Demiris Y, Young Choi J (2016) Visual tracking using attention-modulated disintegration and integration. In: CVPR

  7. Choi J, Jin Chang H, Yun S, Fischer T, Demiris Y, Young Choi J (2017) Attentional correlation filter network for adaptive visual tracking. In: CVPR

  8. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR

  9. Danelljan M, Bhat G, Shahbaz Khan F, Felsberg M (2017) Eco: Efficient convolution operators for tracking. In: CVPR

  10. Danelljan M, Häger G, Khan F, Felsberg M (2014) Accurate scale estimation for robust visual tracking. In: BMVC

  11. Danelljan M, Häger G., Khan FS, Felsberg M (2016) Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking. In: CVPR

  12. Danelljan M, Hager G, Shahbaz Khan F, Felsberg M (2015) Convolutional features for correlation filter based visual tracking. In: ICCV workshop

  13. Danelljan M, Hager G, Shahbaz Khan F, Felsberg M (2015) Learning spatially regularized correlation filters for visual tracking. In: ICCV

  14. Danelljan M, Robinson A, Khan FS, Felsberg M (2016) Beyond correlation filters: learning continuous convolution operators for visual tracking. In: ECCV

  15. Fan H, Ling H (2017) Parallel tracking and verifying: a framework for real-time and high accuracy visual tracking. In: ICCV

  16. Fan H, Ling H (2017) Sanet: structure-aware network for visual tracking. In: CVPR workshop

  17. Galoogahi HK, Fagg A, Lucey S (2017) Learning background-aware correlation filters for visual tracking. In: ICCV

  18. Gao Y, Ji R, Zhang L, Hauptmann A (2014) Symbiotic tracker ensemble toward a unified tracking framework. TCSVT 24(7):1122–1131

    Google Scholar 

  19. Han B, Sim J, Adam H (2017) Branchout: regularization for online ensemble tracking with convolutional neural networks. In: CVPR

  20. Hare S, Saffari A, Torr PH (2011) Struck: structured output tracking with kernels. In: ICCV

  21. Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. TPAMI 37(3):583–596

    Article  Google Scholar 

  22. Hong S, You T, Kwak S, Han B (2015) Online tracking by learning discriminative saliency map with convolutional neural network. In: ICML

  23. Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: CVPR

  24. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. TPAMI 34(7):1409–1422

    Article  Google Scholar 

  25. Khalid O, SanMiguel JC, Cavallaro A (2017) Multi-tracker partition fusion. TCSVT 27(7):1527–1539

    Google Scholar 

  26. Lee DY, Sim JY, Kim CS (2015) Multihypothesis trajectory analysis for robust visual tracking. In: CVPR

  27. Li J, Deng C, Xu RYD, Tao D, Zhao B (2017) Robust object tracking with discrete graph based multiple experts. TIP 26(6):2736–2750

    MathSciNet  Google Scholar 

  28. Li K, He F, Yu H, Chen X (2017) A parallel and robust object tracking approach synthesizing adaptive bayesian learning and improved incremental subspace learning. Frontiers Comput Sci

  29. Li K, He FZ, Yu HP (2018) Robust visual tracking based on convolutional features with illumination and occlusion handing. J Comput Sci Technol 33(1):223–236

    Article  Google Scholar 

  30. Li K, He FZ, Yu HP, Chen X (2017) A correlative classifiers approach based on particle filter and sample set for tracking occluded target. Applied Mathematics-A Journal of Chinese Universities 32(3):294–312

    Article  MathSciNet  Google Scholar 

  31. Li Y, Zhu J (2014) A scale adaptive kernel correlation filter tracker with feature integration. In: ECCV workshop

  32. Liu H, Yan S (2010) Robust graph mode seeking by graph shift. In: ICML

  33. Liu S, Zhang T, Cao X, Xu C (2016) Structural correlation filter for robust visual tracking. In: CVPR

  34. Liu T, Wang G, Yang Q (2015) Real-time part-based visual tracking via adaptive correlation filters. In: CVPR

  35. Lukezic A, Vojir T, Cehovin Zajc L, Matas J, Kristan M (2017) Discriminative correlation filter with channel and spatial reliability. In: CVPR

  36. Ma C, Huang JB, Yang X, Yang MH (2015) Hierarchical convolutional features for visual tracking. In: ICCV

  37. Ma C, Yang X, Zhang C, Yang MH (2015) Long-term correlation tracking. In: CVPR

  38. Nam H, Baek M, Han B (2016) Modeling and propagating cnns in a tree structure for visual tracking. arXiv:1608.07242

  39. Nam H, Han B (2016) Learning multi-domain convolutional neural networks for visual tracking. In: CVPR

  40. Qi Y, Zhang S, Qin L, Yao H, Huang Q, Yang JLMH (2016) Hedged deep tracking. In: CVPR

  41. Shen M, Zhang Y, Wang R, Yang J, Xue L, Hu M (2018) Robust object tracking via superpixels and keypoints. Multimedia Tools and Applications, pp 1–21

  42. Song Y, Ma C, Gong L, Zhang J, Lau R, Yang MH (2017) Crest: convolutional residual learning for visual tracking. In: ICCV

  43. Sun J, He FZ, Chen YL, Chen X (2016) A multiple template approach for robust tracking of fast motion target. Applied Mathematics-A Journal of Chinese Universities 31(2):177–197

    Article  MathSciNet  Google Scholar 

  44. Tao R, Gavves E, Smeulders AW (2016) Siamese instance search for tracking. In: CVPR

  45. Valmadre J, Bertinetto L, Henriques JF, Vedaldi A, Torr PH (2017) End-to-end representation learning for correlation filter based tracking. In: CVPR

  46. Wang H, Liu P, Du Y, Liu X (2018) Online convolution network tracking via spatio-temporal context. Multimedia Tools and Applications, pp 1–14

  47. Wang L, Ouyang W, Wang X, Lu H (2016) Stct: Sequentially training convolutional networks for visual tracking. In: CVPR

  48. Wang M, Liu Y, Huang Z (2017) Large margin object tracking with circulant feature maps. In: CVPR

  49. Wang N, Yeung DY (2014) Ensemble-based tracking: Aggregating crowdsourced structured time series data. In: ICML

  50. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: CVPR

  51. Wu Y, Lim J, Yang MH (2015) Object tracking benchmark. TPAMI 37 (9):1834–1848

    Article  Google Scholar 

  52. Yan X, He F, Hou N, Ai H (2018) An efficient particle swarm optimization for large-scale hardware/software co-design system. International Journal of Cooperative Information Systems 27(01):1741,001

    Article  Google Scholar 

  53. Yang L, Jiang P, Wang F, Wang X (2018) Robust real-time visual object tracking via multi-scale fully convolutional siamese networks. Multimedia Tools and Applications, pp 1–13

  54. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):13

    Article  Google Scholar 

  55. Yu H, He F, Pan Y (2018) A novel region-based active contour model via local patch similarity measure for image segmentation. Multimedia Tools and Applications, pp 1–23

  56. Yun S, Choi J, Yoo Y, Yun K, Young Choi J (2017) Action-decision networks for visual tracking with deep reinforcement learning. In: CVPR

  57. Zhang J, Ma S, Sclaroff S (2014) Meem: robust tracking via multiple experts using entropy minimization. In: ECCV

  58. Zhang K, Zhang L, Yang MH (2012) Real-time compressive tracking. In: ECCV

  59. Zhang K, Zhang L, Yang MH, Zhang D (2013) Fast visual tracking via dense spatio-temporal context learning. In: ECCV

  60. Zhang T, Bibi A, Ghanem B (2016) In defense of sparse tracking: circulant sparse tracker. In: CVPR

  61. Zhang T, Xu C, Yang MH (2017) Multi-task correlation particle filter for robust object tracking. In: CVPR

  62. Zhong W, Lu H, Yang MH (2012) Robust object tracking via sparsity-based collaborative model. In: CVPR

  63. Zhou Y, He F, Hou N, Qiu Y (2018) Parallel ant colony optimization on multi-core simd cpus. Futur Gener Comput Syst 79:473–487

    Article  Google Scholar 

  64. Zhou Y, He F, Qiu Y (2017) Dynamic strategy based parallel ant colony optimization on gpus for tsps. Science China Information Sciences 068(6):102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengang Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Wang, N., Zhou, W. et al. Multi-tracker fusion via adaptive outlier detection. Multimed Tools Appl 78, 2227–2250 (2019). https://doi.org/10.1007/s11042-018-6278-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6278-9

Keywords

Navigation