The adaptive algorithm of information unmistakable embedding into digital images based on the discrete Fourier transformation | Multimedia Tools and Applications Skip to main content
Log in

The adaptive algorithm of information unmistakable embedding into digital images based on the discrete Fourier transformation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Many effective methods of the data embedding into digital images are based on the frequency transformations. However use of similar transformations is connected to the following problem: the built-in message is distorted because of information losses in case of restoration of pixels’ integer values from the frequency domain. It represents a vital issue if the integrity of the transmitted data is critical. For example, an insignificant distortion of the ciphered message results in impossibility of deciphering and to loss of all ciphered information. In this paper is described the new algorithm of the information embedding into digital images on the basis of the discrete Fourier transformation allowing to provide unmistakable extraction of the built-in messages from the frequency domain. The faultlessness is reached through an iterative procedure of embedding and non-uniform distribution of the message parts for the image-container’s blocks. Our algorithm not only solves a problem of the built-in messages distortions, but also provides high visual quality of stego-image. Moreover, our approach to the unmistakable embedding of information into the digital images frequency domain is applicable not only for the discrete Fourier transformation, but also for other frequency transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Al-Dmour H, Al-An A (2016) A steganography embedding method based on edge identification and XOR coding. Expert Syst Appl 46(C):293–306. https://doi.org/10.1016/j.eswa.2015.10.024

    Article  Google Scholar 

  2. Bakshi S, Sa PK, Wang H, Barpanda SS, Majhi B (2017) Fast periocular authentication in handheld devices with reduced phase intensive local pattern. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-4965-6

    Article  Google Scholar 

  3. Cedillo-Hernandez M, Garcia-Ugalde F, Nakano-Miyatake M, Perez-Meana H (2015) Robust watermarking method in DFT domain for effective management of medical imaging. SIViP 9(5):1163–1178. https://doi.org/10.1007/s11760-013-0555-x

    Article  Google Scholar 

  4. Chen WY (2008) Color image steganography scheme using DFT, SPIHT codec, and modified differential phase-shift keying techniques. Appl Math Comput 196(1):40–54. https://doi.org/10.1016/j.amc.2007.05.063

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen ST, Huang HN, Kung WM, Hsu CY (2016) Optimization-based image watermarking with integrated quantization embedding in the wavelet-domain. Multimed Tools Appl 75(10):5493–5511. https://doi.org/10.1007/s11042-015-2522-8

    Article  Google Scholar 

  6. Chen Q, Zhang G, Yang X, Li S, Li Y, Wang HH (2017) Single image shadow detection and removal based on feature fusion and multiple dictionary learning. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-5299-0

  7. Choi YH, Kim D, Rho S, Hwang E (2014) Converting image to a gateway to an information portal for digital signage. Multimed Tools Appl 71:263–278. https://doi.org/10.1007/s11042-012-1315-6

    Article  Google Scholar 

  8. Doğan Ş (2016) A new data hiding method based on chaos embedded genetic algorithm for color image. Artif Intell Rev 46(1):129–143. https://doi.org/10.1007/s10462-016-9459-9

    Article  Google Scholar 

  9. Ejaz N, Anwar J, Ishtiaq M, Baik SW (2014) Adaptive image data hiding using transformation and error replacement. Multimed Tools Appl 73(2):825–840. https://doi.org/10.1007/s11042-013-1377-0

    Article  Google Scholar 

  10. Evsutin O, Kokurina A, Mescheryakov R, Shumskaya O (2016) An adaptive algorithm for the Steganographic embedding information into the discrete Fourier transform phase Spectrum. In: Abraham A, Kovalev S, Tarassov V, Snášel V (eds) Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’16). Advances in intelligent Systems and Computing, vol 451. Springer, Cham. https://doi.org/10.1007/978-3-319-33816-3_5

    Chapter  Google Scholar 

  11. Fallahpour M, Megias D, Ghanbari M (2011) Subjectively adapted high capacity lossless image data hiding based on prediction errors. Multimed Tools Appl 52(2):513–527. https://doi.org/10.1007/s11042-010-0486-2

    Article  Google Scholar 

  12. Fridrich J (2010) Steganography in digital media: principles, algorithms, and applications. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  13. Gonzalez RC, Woods RE (2008) Digital image processing. Prentice Hall, Upper Saddle River

    Google Scholar 

  14. Holliman M, Memon N, Yeo BL, Yeung M (1998) Adaptive public watermarking of DCT-based compressed images. Proc SPIE 3312:284–295. https://doi.org/10.1117/12.298461

    Article  Google Scholar 

  15. Huang F, Huang J, Shi YQ (2012) New channel selection rule for JPEG steganography. IEEE T Inf Foren Sec 7(4):11811191–11811191. https://doi.org/10.1109/TIFS.2012.2198213

    Article  Google Scholar 

  16. Islam S, Modi MR, Gupta P (2014) Edge-based image steganography. EURASIP J Info Secur 2014:8. https://doi.org/10.1186/1687-417X-2014-8

    Article  Google Scholar 

  17. Jiang C, Pang Y, Xiong S (2014) A high capacity steganographic method based on quantization table modification and F5 algorithm. Circuits Syst Signal Process 33(5):1611–1626. https://doi.org/10.1007/s00034-013-9703-3

    Article  Google Scholar 

  18. Jung KH, Yoo KY (2009) Data hiding method using image interpolation. Comp Stand Inter 31(2):465–470. https://doi.org/10.1016/j.csi.2008.06.001

    Article  Google Scholar 

  19. Kanan HR, Nazeri B (2014) A novel image steganography scheme with high embedding capacity and tunable visual image quality based on a genetic algorithm. Expert Syst Appl 41(14):6123–6130. https://doi.org/10.1016/j.eswa.2014.04.022

    Article  Google Scholar 

  20. Lee CF, Huang YL (2012) An efficient image interpolation increasing payload in reversible data hiding. Expert Syst Appl 39(8):6712–6719. https://doi.org/10.1016/j.eswa.2011.12.019

    Article  Google Scholar 

  21. Li F, Zhang X, Yu J, Shen W (2014) Adaptive JPEG steganography with new distortion function. Ann Telecommun 69(7):431–440. https://doi.org/10.1007/s12243-013-0415-2

    Article  Google Scholar 

  22. Liu S, Fu W, He L, Zhou J, Ma M (2017) Distribution of primary additional errors in fractal encoding method. Multimed Tools Appl 76:5787–5802. https://doi.org/10.1007/s11042-014-2408-1

    Article  Google Scholar 

  23. Maity SP, Kundu MK (2009) Genetic algorithms for optimality of data hiding in digital images. Soft Comput 13(4):361–373. https://doi.org/10.1007/s00500-008-0329-5

    Article  Google Scholar 

  24. Pakdaman Z, Saryazdi S, Nezamabadi-pour H (2017) A prediction based reversible image watermarking in Hadamard domain. Multimed Tools Appl 76:8517–8545. https://doi.org/10.1007/s11042-016-3490-3

    Article  Google Scholar 

  25. Poljicak A, Mandic L, Agic D (2011) Discrete Fourier transform-based watermarking method with an optimal implementation radius. J Electron Imaging 20(3):033008-1–033008-8. https://doi.org/10.1117/1.3609010

    Article  Google Scholar 

  26. Rabie T (2017) Color-secure digital image compression. Multimed Tools Appl 76:16657–16679. https://doi.org/10.1007/s11042-016-3942-9

    Article  Google Scholar 

  27. Rabie T, Kamel I (2017) High-capacity steganography: a global-adaptive-region discrete cosine transform approach. Multimed Tools Appl 76:6473–6493. https://doi.org/10.1007/s11042-016-3301-x

    Article  Google Scholar 

  28. Rabie T, Kamel I (2017) Toward optimal embedding capacity for transform domain steganography: a quad-tree adaptive-region approach. Multimed Tools Appl 76:8627–8650. https://doi.org/10.1007/s11042-016-3501-4

    Article  Google Scholar 

  29. Ridzon R, Levicky D (2013) Content protection in grayscale and color images based on robust digital watermarking. Telecommun Syst 52(3):1617–1631. https://doi.org/10.1007/s11235-011-9655-5

    Article  Google Scholar 

  30. Salomon D (2007) Data compression: the complete reference, 4th edn. Springer–Verlag, London

    MATH  Google Scholar 

  31. SIPI Image Database. http://sipi.usc.edu/database/

  32. Solachidis V, Pitas I (2001) Circularly symmetric watermark embedding in 2-D DFT domain. IEEE T Image Process 10(11):1741–1753. https://doi.org/10.1109/83.967401

    Article  MATH  Google Scholar 

  33. Song J, Yoon G, Cho H, Yoon SM (2018) Structure preserving dimensionality reduction for visual object recognition. Multimed Tools Appl. https://doi.org/10.1007/s11042-018-5682-5

    Article  Google Scholar 

  34. Wang J, Li T, Shi YQ, Lian S, Ye J (2017) Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics. Multimed Tools Appl 76:23721–23737. https://doi.org/10.1007/s11042-016-4153-0

    Article  Google Scholar 

  35. Weng CY, Tso HK, Wang SJ (2012) Steganographic data hiding in image processing using predictive differencing. Opto-Electron Rev 20(2):126–133. https://doi.org/10.2478/s11772-012-0020-3

    Article  Google Scholar 

  36. Westfeld A (2001) F5—A Steganographic Algorithm. In: Moskowitz IS (ed) Information hiding. IH 2001. Lecture Notes in Computer Science, vol 2137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45496-9_21

    Chapter  Google Scholar 

  37. Xie X, Livermore C (2016) A pivot-hinged, multilayer SU-8 micro motion amplifier assembled by a self-aligned approach. In: Proceedings of the 29th International Conference on Micro Electro Mechanical Systems (MEMS 2016). IEEE. https://doi.org/10.1109/MEMSYS.2016.7421561

  38. Xie X, Livermore C (2017) Passively self-aligned assembly of compact barrel hinges for highperformance, out-of-plane mems actuators. In: Proceedings of the 30th International Conference on Micro Electro Mechanical Systems (MEMS 2017). IEEE. https://doi.org/10.1109/MEMSYS.2017.7863532

  39. Xie X, Zaitsev Y, Velásquez-García LF, Teller S, Livermore C (2014) Compact, scalable, highresolution, MEMS-enabled tactile displays. In: Proceedings of the 16th Workshop on Solid-State Sensors, Actuators, and Microsystems. Hilton Head Island, South Califorina, pp 127–130

  40. Xie X, Zaitsev Y, Velásquez-García LF, Teller SJ, Livermore C (2014) Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile displays. J Micromech Microeng 24(12):125014. https://doi.org/10.1088/0960-1317/24/12/125014

    Article  Google Scholar 

  41. Zhao J, Koch E (1995) Embedding Robust labels into images for copyright protection. In: Brunnstein K, Sint PP (eds) Proceedings of the Conference on Intellectual Property Rights and New Technologies (KnowRight '95). R. Oldenbourg Verlag GmbH Munich, Hamburg

Download references

Acknowledgments

The work was funded by the Russian Federation Ministry of Education and Science (grant 2.3583.2017/4.6). We are very grateful to the anonymous referees for their constructive comments and helpful suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Evsutin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evsutin, O., Kokurina, A., Meshcheryakov, R. et al. The adaptive algorithm of information unmistakable embedding into digital images based on the discrete Fourier transformation. Multimed Tools Appl 77, 28567–28599 (2018). https://doi.org/10.1007/s11042-018-6055-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6055-9

Keywords

Navigation