Unified entropy-based sorting for reversible data hiding | Multimedia Tools and Applications Skip to main content
Log in

Unified entropy-based sorting for reversible data hiding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Reversible data hiding schemes compete against each other for a sharply distributed prediction error histogram, usually realized by utilizing prediction strategies together with sorting technique that aims to estimate the local context complexity for each pixel to optimize the embedding order. Sorting techniques benefit prediction a lot by picking out pixels located in smooth areas. In this paper, a novel entropy-based sorting (EBS) scheme is proposed for reversible data hiding, which uses entropy measurement to characterize local context complexity for each image pixel. Futhermore, by extending the EBS technique to the two-dimensional case, it shows generalized abilities for multi-dimensinal RDH scenarios. Additionally, a new gradient-based tracking and weighting (GBTW) pixel prediction method is introduced to be combined with the EBS technique. Experimental results apparently indicate that our proposed method outperforms the previous state-of-arts counterparts significantly in terms of both the prediction accuracy and the overall embedding performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Afsharizadeh M, Mohammadi M (2013) A reversible watermarking prediction based scheme using a new sorting and technique. In: 10th international conference on information security and cryptology (ISC), pp 98–104

  2. Armando Domínguez-Molina J, González-Farías G A practical procedure to estimate the shape parameter in the generalized Gaussian distribution Cimat tech rep.I-01-08-eng.pdf.[Online]http://www.cimat.mx/reportes/enlinea/I-01-18-eng.pdf

  3. Coltuc D (2012) Low distortion transform for reversible watermarking. IEEE Trans Image Process 21(1):412–417

    Article  MathSciNet  Google Scholar 

  4. Coltuc D, Dragoi I-C (2013) Context embedding for raster-scan rhombus based reversible watermarking. In: Proceedings of the ACM IH&MMSEC, pp 215–220

  5. Dragoi C, Coltuc D (2012) Improved rhombus interpolation for reversible watermarking by difference expansion. In: Proceedings of the EUSIPCO, pp 1688–1692

  6. Dragoi C, Coltuc D (2014) Gradient based prediction for reversible watermarking by difference expansion. In: IH&MMSec’14, pp 35–41

  7. Dragoi C, Coltuc D (2014) Local-prediction-based difference expansion reversible watermarking. IEEE Trans Image Process 23(4):1779–1781

    Article  MathSciNet  Google Scholar 

  8. Fallahpour M (2008) Reversible image data hiding based on gradient adjusted prediction. IEICE Electron Exp 5(20):870–876

    Article  Google Scholar 

  9. Giller G (2005) A generalized error distribution. Available at SSRN. doi:http://dx.doi.org/http://ssrn.com/abstract=2265027 or 10.2139/ssrn.2265027

  10. Hu X, Zhang W, Hu X, Yu N, Zhao X, Li F (2013) Fast estimation of optimal marked-signal distribution for reversible data hiding. IEEE Trans Inf Forensics Secur 8(5):779–788

    Article  Google Scholar 

  11. Hu Y, Lee H-K, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260

    Article  Google Scholar 

  12. Kamstra LHJ, Heijmans A M (2005) Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans Image Process 14(12):2082–2090

    Article  MathSciNet  Google Scholar 

  13. Lee S, Yoo CD, Kalker T (2007) Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Trans Inform Forensics Secur 2(3):321–330

    Article  Google Scholar 

  14. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20 (12):3524–3533

    Article  MathSciNet  Google Scholar 

  15. Lin S-J, Chung W-H (2012) The scalar scheme for reversible information-embedding in gray-scale signals: capacity evaluation and code constructions. IEEE Trans Inf Forensics Secur 7(4):1155–1167

    Article  Google Scholar 

  16. Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensics Secur 5 (1):187–193

    Article  Google Scholar 

  17. Nadarajah S (2005) A generalized normal distribution. J Appl Stat 32(7):685–694

    Article  MathSciNet  MATH  Google Scholar 

  18. Ni Z, Shi Y, Ansari N, Wei S (2006) Reversible data hiding. IEEE Trans Circ Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  19. Ou B, Li X, Zhao Y, Ni R (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5110–5121

    Article  MathSciNet  Google Scholar 

  20. Qin C, Chang C-C, Huang Y-H, Liao L-T (2013) An inpaintingassisted reversible steganographic scheme using histogram shifting mechanism. IEEE Trans Circ Syst Video Technol 23(7):1109–1118

    Article  Google Scholar 

  21. Rad RM, Attar A (2013) A predictive algorithm for multimedia data compression. Multimed Syst 19(2):103–115

    Article  Google Scholar 

  22. Rényi A (1961) On measures of entropy and information. In: Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, vol I, pp 547–561

  23. Sachnev V, Kim HJ, Nam J, Suresh S, Shi Y (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19(7):989–999

    Article  Google Scholar 

  24. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  MathSciNet  MATH  Google Scholar 

  25. Thodi D M, Rodriguez J J (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730

    Article  MathSciNet  Google Scholar 

  26. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  27. Wang X, Li X, Yang B, Guo Z (2010) Effcient generalized integer transform for reversible watermarking. IEEE Signal Process Lett 17(6):567–570

    Article  Google Scholar 

  28. Wu H-T, Huang J (2012) Reversible image watermarking on prediction errors by efficient histogram modification. Signal Process 92(12):3000–3009

    Article  Google Scholar 

  29. Zhang W, Chen B, Yu N (2011) Capacity-approaching codes for reversible data hiding. In: Proceedings of the 13th information hiding conference, LNCS 6958, pp 255–269

  30. Zhang W, Chen B, Yu N (2012) Improving various reversible data hiding schemes via optimal codes for binary covers. IEEE Trans Image Process 21(6):2991–3003

    Article  MathSciNet  Google Scholar 

  31. Zhang W, Hu X, Li X, Yu N (2013) Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression. IEEE Trans Image Process 22(7):2775–2785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Zhang.

Additional information

This work was supported in part by the Natural Science Foundation of China under Grant 61170234 and Grant 61572452, in part by the Strategic Priority Research Program through the Chinese Academy of Sciences under Grant XDA06030601, and in part by the Science and Technology on Information Assurance Laboratory under Grant KJ-13-003.

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhang, W., Jiang, R. et al. Unified entropy-based sorting for reversible data hiding. Multimed Tools Appl 76, 3829–3850 (2017). https://doi.org/10.1007/s11042-016-3989-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3989-7

Keywords

Navigation