Abstract
Though data redundancy can be eliminated at aggregation point to reduce the amount of sensory data transmission, it introduces new challenges due to multiple flows competing for the limited bandwidth in the vicinity of the aggregation point. On the other hand, waiting for multiple flows to arrive at a centralized node for aggregation not only uses precious memory to store these flows but also increases the delays of sensory data delivery. While traditional aggregation schemes can be characterized as “multipath converging,” this paper proposes the notation of “multipath expanding” to solve the above problems by jointly considering data fusion and load balancing. We propose a novel directional-controlled fusion (DCF) scheme, consisting of two key algorithms termed as directional control and multipath fusion. By adjusting a key parameter named multipath fusion factor in DCF, the trade-offs between multipath-converging and multipath-expanding can be easily achieved, in order to satisfy specific QoS requirements from various applications. We present simulations that verify the effectiveness of the proposed scheme.
Similar content being viewed by others
Notes
If multiple neighbors use the same next hop node, which means that next hop has already been a fusion point, the neighbor whose distance is the closest to the sink will be selected.
The upstream neighbors mean the neighbors whose distances to the sink are larger than the distance between current node and the sink. Generally, the region of upstream neighbors forms a half circle, as shown in Fig. 4.
The notation “large(-)” means that P ff is negative and its absolute value is relatively large, while “small(+)” means that P ff has a positive small value, and so forth.
References
Crossbow Technology (2008) BehaviorScope—Using WSN to recognize human behavior. http://blog.xbow.com/xblog/2007/06/behaviorscope_u.html.
Akkaya K, Demirbas M, Aygun R (2008) The impact of data aggregation on the performance of wireless sensor networks. Wirel Commun Mob Comput J 8(2):171–193
Al-Karaki J, Kamal E (2004) Routing techniques in wireless sensor networks: a survey. IEEE Pers Commun 11(6):6–28
Chen M, Kwon T, Yuan Y, Choi Y, Leung V (2007) Mobile agent-based directed diffusion in wireless sensor networks. EURASIP J Appl Signal Process 2007. Article ID 36871. doi:10.1155/2007/36871
Chen M, Leung V, Mao S, Yuan Y (2007) Directional geographical routing for real-time video communications in wireless sensor networks. Comput Commun 30(17):3368–3383
Chen M, Wang X, Leung V, Yuan Y (2006) Virtual coordinates based routing in wireless sensor networks. Sens Lett 4(3):325–330
Harris A, Snader R, Gupta I (2007) Building trees based on aggregation efficiency in sensor networks. J Ad Hoc Netw 5(8):1317–1328
Intanagonwiwat C, Estrin D, Govindan R, Heidemann J (2002) Impact of network density on data aggregation in wireless sensor networks. In: Proc. IEEE ICDCS’02. Vienna, Austria
Intanagonwiwat C, Govindan R, Estrin D, Heidemann J, Silva F (2003) Directed diffusion for wireless sensor networking. IEEE/ACM Trans Netw 11(1):2–16
Krishnamachari B, Estrin D, Wicker S (2002) Modeling data-centric routing in wireless sensor networks. In: Proc. IEEE INFOCOM’02. New York, NY
Krishnamachari B, Estrin D, Wicker S (2002) The impact of data aggregation in wireless sensor networks. In: Proc. international workshop on distributed event-based systems. Vienna, Austria, pp 575–578
Krishnamachari B, Estrin D, Wicker S (2002) The impact of data aggregation in wireless sensor networks. In: Proc. international workshop of distributed event based systems. Vienna, Austria
Li J, Jannotti J, Couto DD, Karger D, Morris R (2000) A scalable location service for geographic ad hoc routing. In: Proc. ACM MobiCom’00. Boston, MA, pp 120–130
Rowe A, Goel D, Rajkumar R (2007) FireFly mosaic: a vision-enabled wireless sensor networking system. In: Proc. IEEE RTSS’07. Tucson, AZ, pp 459–468
Snader R, Harris A, Kravets R (2007) Tethys: a distributed algorithm for intelligent aggregation in sensor networks. In: Proc. IEEE WCNC’07. Hong Kong, pp 4117–4122
Acknowledgements
This work was supported in part by the Canadian Natural Sciences and Engineering Research Council under grant STPGP 322208-05. S. Mao’s research has been supported in part by the U.S. National Science Foundation under Grant ECCS-0802113, and through the Wireless Internet Center for Advanced Technology at Auburn University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, M., Leung, V.C.M. & Mao, S. Directional Controlled Fusion in Wireless Sensor Networks. Mobile Netw Appl 14, 220–229 (2009). https://doi.org/10.1007/s11036-008-0133-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11036-008-0133-6