Abstract
We start the investigation of inert modules over valuation domains, a class of modules containing finitely generated and quasi-injective modules. A complete description is provided when the valuation domain is a DVR. For arbitrary valuation domains, we reduce the investigation to reduced torsion modules and obtain a complete characterization of inert uniserial modules.
Similar content being viewed by others
References
W. Brandal, Almost maximal integral domains and finitely generated modules. Trans. Am. Math. Soc. 183, 203–222 (1973)
D. Dikranjan, A. Giordano Bruno, L. Salce, S. Virili, Fully inert subgroups of divisible Abelian groups. J. Group Theory 16(6), 915–939 (2013)
D. Dikranjan, A. Giordano Bruno, L. Salce, S. Virili, Intrinsic algebraic entropy. J. Pure Appl. Algebra 219(7), 2933–2961 (2015)
D. Dikranjan, L. Salce, P. Zanardo, Fully inert subgroups of free Abelian groups. Period. Math. Hung. 69(1), 69–78 (2014)
L. Fuchs, L. Salce, Modules over Valuation Domains (Marcel Dekker, New York, 1985)
L. Fuchs, L. Salce, Modules Over Non-Noetherian Domains, vol. 84 (AMS, New York, 2001)
B. Goldsmith, L. Salce, P. Zanardo, Fully inert submodules of torsion-free modules over the ring of \(p\)-adic integers. Colloq. Math. 136(2), 169–178 (2014)
B. Goldsmith, L. Salce, P. Zanardo, Fully inert subgroups of Abelian \(p\)-groups. J. Algebra 419, 332–349 (2014)
I. Kaplansky, Maximal fields with valuations. Duke Math. J. 9, 303–321 (1942)
M. Nishi, On the ring of endomorphisms of an indecomposable injective module over a Prüfer ring. Hiroshima Math. J. 2, 271–283 (1972)
A. Ostrowsky, Untersuchungen zur arithmetischen Theorie der Körper. Math. Z. 39, 269–244 (1935)
L. Salce, Invariants for quasi-injective modules over valuation domains. Colloq. Math. 144(1), 77–86 (2016)
L. Salce, P. Zanardo, Some cardinal invariants for valuation domains. Rend. Sem. Mater. Univ. Padova 74, 205–217 (1985)
L. Salce, P. Zanardo, On two-generated modules over valuation domains. Arch. Math. 46, 408–418 (1986)
T.S. Shores, W.J. Lewis, Serial modules and endomorphism rings. Duke Math. J. 41, 889–909 (1974)
R. Warfield, Decomposition of injective modules. Pac. J. Math. 31, 263–276 (1969)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Salce, L. On inert modules over valuation domains. Period Math Hung 79, 120–133 (2019). https://doi.org/10.1007/s10998-019-00285-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-019-00285-2