Abstract
We present a natural implementation of the Krivine machine in interaction nets: one rule for each transition and the usual rules for duplication and erasing. There is only one rule devoted to the so-called administration. This way, we obtain a graphical system encoding λ-calculus weak head reduction that can be extended to a λ-calculus normalizer by encoding left reduction.
Similar content being viewed by others
References
Asperti, A., Guerrini, S.: The Optimal Implementation of Functional Programming Languages, Cambridge Tracts in Theoretical Computer Science, vol. 45. Cambridge University Press, Cambridge (1998)
Danos, V., Regnier, L.: Reversible, irreversible and optimal λ-machines. Theor. Comput. Sci. 227 (1999)
Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987)
Gonthier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal lambda reduction. In: Proceedings of the 19th Annnual ACM Symposium on Principles of Programming Languages (POPL’92), pp. 15–26. ACM Press (1992)
Krivine, J.-L.: Un interpréteur pour le λ-calcul. Technical Report, Notes de cours de DEA, Université de Paris 7 (1985)
Krivine, J.-L.: Lambda-Calculus, Types and Models. Ellis Horwood Series in Computers and Their Applications (1993). Transl. from the French by Rene Cori (English)
Lafont, Y.: Interaction nets. In: Proceedings of the 17th Annnual ACM Symposium on Principles of Programming Languages, Orlando, FL, USA, pp. 95–108 (1990)
Lafont, Y.: From proof-nets to interaction nets. In: Advances in Linear Logic. London Mathematical Society Lecture Note Series, vol. 222. Cambridge University Press, Cambridge (1995)
Lafont, Y.: Interaction combinators. Inf. Comput. 137(1), 69–101 (1997)
Lamping, J.: An algorithm for optimal lambda-calculus reduction. In: Proceedings of the 17th Annnual ACM Symposium on Principles of Programming Languages, Orlando, FL, USA (1990)
Lang, F.: Modèles de la β-réduction pour les implantations. Ph.D. Thesis, Ecole normale supérieure de Lyon (1998)
Lippi, S.: Encoding left reduction in the lambda-calculus with interaction nets. Math. Struct. Comput. Sci. 12(6) (December 2002)
Lippi, S.: \(\textsf{in}^{2}\) : a graphical interpreter for the interaction nets. In: Proceedings of Rewriting Techniques and Applications (RTA ’02). Springer, New York (2002)
Lippi, S.: Théorie et pratique des réseaux d’interaction. Ph.D. Thesis, Université de la méditerranée (2002)
Mackie, I.: The geometry of implementation. Ph.D. Thesis, Department of Computing, Imperial College of Science, Technology and Medicine (1994)
Mackie, I.: Yale: yet another lambda evaluator based on intetaction nets. In: Proceedings of the 3rd ACM SIGPLAN International Conference on Functional Programming (ICFP’98). ACM Press (1998)
Mackie, I., Sousa Pinto, J.: Encoding linear logic with interaction combinators. Inf. Comput. 176, 153–186 (2002)
Sousa Pinto, J.: Weak reduction and garbage collection in interaction nets. In: Gramlich, B., Lucas, S. (eds.) Proceedings of the 3rd Int’l Workshop on Reduction Strategies in Rewriting and Programming (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lippi, S. The graphical Krivine machine. Higher-Order Symb Comput 20, 295–318 (2007). https://doi.org/10.1007/s10990-007-9011-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10990-007-9011-3