Further on Set-Valued Equilibrium Problems and Applications to Browder Variational Inclusions | Journal of Optimization Theory and Applications Skip to main content
Log in

Further on Set-Valued Equilibrium Problems and Applications to Browder Variational Inclusions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce some concepts of convexity and semicontinuity for real set-valued mappings similar to those of real single-valued mappings. Then, we obtain different results on the existence of solutions of set-valued equilibrium problems generalizing in a common way several old ones for both single-valued and set-valued equilibrium problems. Applications to Browder variational inclusions, with weakened conditions on the involved set-valued operator, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alleche, B.: Multivalued mixed variational inequalities with locally Lipschitzian and locally cocoercive multivalued mappings. J. Math. Anal. Appl. 399, 625–637 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alleche, B., Rădulescu, V.: Set-valued equilibrium problems with applications to Browder variational inclusions and to fixed point theory. Nonlinear Anal. Real World Appl. 28, 251–268 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kristály, A., Varga, C.: Set-valued versions of Ky Fan’s inequality with application to variational inclusion theory. J. Math. Anal. Appl. 282, 8–20 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lásló, S., Viorel, A.: Densely defined equilibrium problems. J. Optim. Theory Appl. 166, 52–75 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shih, M.H., Tan, K.K.: Browder–Hartman–Stampacchia variational inequalities for multi-valued monotone operators. J. Math. Anal. Appl. 134, 431–440 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lásló, S., Viorel, A.: Generalized monotone operators on dense sets. Numer. Funct. Anal. Optim. 36(7), 901–929 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cambini, A., Martein, L.: Generalized Convexity and Optimization. Theory and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 616. Springer, Berlin (2009)

    MATH  Google Scholar 

  8. Papageorgiou, N.S., Kyritsi-Yiallourou, S.T.H.: Handbook of Applied Analysis. Advances in Mechanics and Mathematics, vol. 19. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  9. Alleche, B.: Semicontinuity of bifunctions and applications to regularization methods for equilibrium problems. Afr. Mat. 26(7), 1637–1649 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Alleche, B., Rădulescu, V.: Equilibrium problem techniques in the qualitative analysis of quasi-hemivariational inequalities. Optimization 64(9), 1855–1868 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Alleche, B., Rădulescu, V.: The Ekeland variational principle for equilibrium problems revisited and applications. Nonlinear Anal. Real World Appl. 23, 17–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Alleche, B., Rădulescu, V.: Solutions and approximate solutions of quasi-equilibrium problems in Banach spaces. J. Optim. Theory Appl. 170, 629–649 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  14. Browder, F.E.: The fixed point theory of multi-valued mappings in topological vector spaces. Math. Ann. 177, 283–301 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Academic, New York (2003)

    Book  MATH  Google Scholar 

  16. Lee, C., Tan, K.K.: On Fan’s extensions of Browder’s fixed point theorems for multi-valued inward mappings. J. Aust. Math. Soc. 26(2), 169–174 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

V.D. Rădulescu acknowledges the support through a grant of the Ministry of Research and Innovation, CNCS–UEFISCDI, project number PN-III-P4-ID-PCE-2016-0130, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenţiu D. Rădulescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alleche, B., Rădulescu, V.D. Further on Set-Valued Equilibrium Problems and Applications to Browder Variational Inclusions. J Optim Theory Appl 175, 39–58 (2017). https://doi.org/10.1007/s10957-017-1169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1169-1

Keywords

Mathematics Subject Classification

Navigation