On the Parametric Decomposition Theorem in Multiobjective Optimization | Journal of Optimization Theory and Applications Skip to main content
Log in

On the Parametric Decomposition Theorem in Multiobjective Optimization

  • Forum
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

An example is given to show the inadequacy of a well-known result, concerning the parametric decomposition theorem for multiobjective optimization problems. We also give an accurate decomposition theorem, which generalizes a corrected reformulation of this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haimes, Y.Y.: Multiple-criteria decisionmaking: a retrospective analysis. IEEE Trans. Syst. Man Cybern. 15(3), 313–315 (1985)

    Article  MathSciNet  Google Scholar 

  2. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  3. Ehrgott, M., Gandibleux, X.: Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Kluwer, New York (2002)

    MATH  Google Scholar 

  4. Li, D., Haimes, Y.Y.: The envelope approach for multiobjective optimization problems. IEEE Trans. Syst. Man Cybern. 17(6), 1026–1038 (1987)

    Article  MathSciNet  Google Scholar 

  5. Li, D., Haimes, Y.Y.: Correction to: The envelope approach for multiobjective optimization problems ieee trans. systems man cybernet. 17(6), 1026–1038 (1987). IEEE Trans. Syst. Man Cybern. 8(2), 332 (1988)

    Google Scholar 

  6. Yu, P.: Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives. J. Optim. Theory Appl. 14(3), 319–377 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Mathematics in Science and Engineering, vol. 176. Academic Press, New York (1985)

    MATH  Google Scholar 

  8. Luc, D.T.: Theory of vector optimization. In: Lecture Notes in Economics and Mathematical Systems, vol. 319, pp. 173. Springer, Berlin/Heidelberg (1989)

  9. Caballero, R., Gómez, T., Luque, M., Miguel, F., Ruiz, R.: Hierarchical generation of Pareto optimal solutions in large-scale multiobjective systems. Comput. Oper. Res. 29(11), 1537–1558 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Abo-Sinna, M., Amer, A., Ibrahim, A.: Hierarchical generation of \(\alpha \)-pareto optimal solutions in large-scale multi-objective non-linear systems with fuzzy parameters. Appl. Math. Model. 32(6), 930–957 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gardenghi, M., Gómez, T., Miguel, F., Wiecek, M.: Algebra of efficient sets for multiobjective complex systems. J. Optim. Theory Appl. 149(2), 385–410 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gardenghi, M., Wiecek, M.: Efficiency for multiobjective multidisciplinary optimization problems with quasiseparable subproblems. Optim. Eng. 13(2), 293–318 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Konur, D., Farhangi, H., Dagli, C.: A multi-objective military system of systems architecting problem with inflexible and flexible systems: formulation and solution methods. OR Spectr. 38(4), 967–1006 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miguel, F., Gómez, T.: Decomposition-based approaches for multi objective composite systems. Pac. J. Optim. (accepted)

Download references

Acknowledgements

This research was partly supported by the Plan Andaluz de Investigacíon (group SEJ-532) and by the Ministerio de Economía y Competitividad of Spain (Research Projects MTM2013-45588-C3-C2 and ECO2014-56397-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisca Miguel García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuenca Mira, J.A., Miguel García, F. On the Parametric Decomposition Theorem in Multiobjective Optimization. J Optim Theory Appl 174, 945–953 (2017). https://doi.org/10.1007/s10957-017-1118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1118-z

Keywords

Mathematics Subject Classification

Navigation