The Solvability and Optimal Controls for Impulsive Fractional Stochastic Integro-Differential Equations via Resolvent Operators | Journal of Optimization Theory and Applications Skip to main content
Log in

The Solvability and Optimal Controls for Impulsive Fractional Stochastic Integro-Differential Equations via Resolvent Operators

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this manuscript, we investigate the solvability and optimal controls for impulsive fractional stochastic integro-differential equations in Hilbert space. Sufficient conditions are obtained for the existence of mild solution of the considered system by using analytic resolvent operators, the uniform continuity of the resolvent, and Leray–Schauder fixed point theorem. Then, the existence of optimal controls is discussed for the considered system. Finally, the obtained theoretical result is validated through an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1998)

    MATH  Google Scholar 

  3. Sukavanam, N., Kumar, S.: Approximate controllability of fractional order semilinear delay systems. J. Optim. Theory Appl. 151, 373–384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S.M.: Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 18, 3498–3508 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ganesh, R., Sakthivel, R., Mahmudov, N.I.: Approximate controllability of fractional functional equations with infinite delay. Topol. Methods Nonlinear Anal. 43, 345–364 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balasubramaniam, P., Ntouyas, S.K.: Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space. J. Math. Anal. Appl. 324, 161–176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sakthivel, R., Suganya, S., Anthoni, S.M.: Approximate controllability of fractional stochastic evolution equations. Comput. Math. Appl. 63, 660–668 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ren, Y., Dai, H., Sakthivel, R.: Approximate controllability of stochastic differential systems driven by a Levy process. Int. J. Control 86, 1158–1164 (2013)

    Article  MATH  Google Scholar 

  9. Sakthivel, R., Nieto, J.J., Mahmudov, N.I.: Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay. Taiwan. J. Math. 14, 1777–1797 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lakshmikantham, V., Bainov, D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  11. Balasubramaniam, P., Kumaresan, N., Ratnavelu, K., Tamilalagan, P.: Local and global existence of mild solution for impulsive fractional stochastic differential equations. Bull. Malays. Math. Sci. Soc. 38, 867–884 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, X., Liu, Z., Han, J.: The solvability and optimal controls for some fractional impulsive equation. Abstr. Appl. Anal. Article ID 914592 (2013)

  13. Pan, L.: Existence of mild solution for impulsive stochastic differential equations with nonlocal conditions. Differ. Equ. Appl. 4, 485–494 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Ren, Y., Cheng, X., Sakthivel, R.: Impulsive neutral stochastic functional integro-differential equations with infinite delay driven by fBm. Appl. Math. Comput. 247, 205–212 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Agrawal, O.P.: General formulation for the numerical solution of optimal control problems. Int. J. Control 50, 627–638 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Balder, E.J.: Necessary and sufficient conditions for \(L_1\)-strong weak lower semicontinuity of integral functionals. Nonlinear Anal. 11, 1399–1404 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)

    MATH  Google Scholar 

  18. Loewen, P.D., Rockafellar, R.T.: Optimal control of unbounded differential inclusions. SIAM J. Control Optim. 32, 442–470 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Agrawal, O.P., Defterli, O., Baleanu, D.: Fractional optimal control problems with several state and control variables. J. Vib. Control 16, 1967–1976 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fan, Z., Mophou, G.: Existence of optimal controls for a semilinear composite fractional relaxation equation. Rep. Math. Phys. 73, 311–323 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, J., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal. RWA 12, 262–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, J., Zhou, Y., Medved, M.: On the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay. J. Optim. Theory Appl. 152, 31–50 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Balasubramaniam, P., Park, J.Y., Vincent Antony Kumar, A.: Existence of solutions for semilinear neutral stochastic functional differential equations with nonlocal conditions. Nonlinear Anal. 71, 1049–1058 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ahmed, H.M.: Semilinear neutral fractional stochastic integro-differential equations with nonlocal conditions. J. Theor. Probab. 28, 667–680 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kamocki, R: On a fractional optimal control problem with Jumarie’s modified Riemann–Liouville derivative. In: Methods and Models in Automation and Robotics (MMAR), 19-th International Conference On. IEEE 140–145 (2014)

  27. Li, X., Liu, Z.: The solvability and optimal controls of impulsive fractional semilinear differential equations. Taiwan. J. Math. 19, 433–453 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Balachandran, K., Kiruthika, S.: Existence results for fractional integrodifferential equations with nonlocal condition via resolvent operators. Comput. Math. Appl. 62, 1350–1358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, K., Jia, J.: Existence and uniqueness of mild solutions for abstract delay fractional differential equations. Comput. Math. Appl. 62, 1398–1404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pruss, J.: Evolutionary Integral Equations and Applications. Monographs in Mathematics. Birkhauser Verlag, Basel (1993)

    Book  MATH  Google Scholar 

  31. Fan, Z., Mophou, G.: Nonlocal problems for fractional differential equations via resolvent operators. Int. J. Differ. Equ. 2013, Article ID 490673 (2013)

  32. Fan, Z.: Approximate controllability of fractional differential equations via resolvent operators. Adv. Difference Equ. 2014, 54 (2014)

    Article  MathSciNet  Google Scholar 

  33. Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)

    MATH  Google Scholar 

  34. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  35. Fan, Z.: Characterization of compactness for resolvents and its applications. Appl. Math. Comput. 232, 60–67 (2014)

    MathSciNet  Google Scholar 

  36. Chen, L., Fan, Z., Li, G.: On a nonlocal problem for fractional differential equations via resolvent operators. Adv. Difference Equ. 2014, 251 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The works of the authors are supported by Council of Scientific and Industrial Research, Extramural Research Division, Pusa, New Delhi, India, under the Grant No. 25(0217)/13/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Balasubramaniam.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramaniam, P., Tamilalagan, P. The Solvability and Optimal Controls for Impulsive Fractional Stochastic Integro-Differential Equations via Resolvent Operators. J Optim Theory Appl 174, 139–155 (2017). https://doi.org/10.1007/s10957-016-0865-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0865-6

Keywords

Mathematics Subject Classification

Navigation