Stability Results of Variational Systems Under Openness with Respect to Fixed Sets | Journal of Optimization Theory and Applications Skip to main content
Log in

Stability Results of Variational Systems Under Openness with Respect to Fixed Sets

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present the notions of openness and metric regularity for a set-valued map with respect to two fixed sets, proving their equivalence. By using different approaches, we show the stability, with respect to the sum of maps, of the openness property, both in the setting of Banach spaces and of metric spaces. Finally, we infer the regularity of the map solving a generalized parametric equation defined via a parametric map that is, in its turn, perturbed by the sum with another map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyusternik, V.A.: On the conditional extrema of functionals. Math. Sbornik 41, 390–401 (1934)

    MATH  Google Scholar 

  2. Graves, L.M.: Some mapping theorems. Duke Math. J. 17, 111–114 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  3. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ioffe, A.D.: Metric regularity and subdifferential calculus (Russian). Uspekhi Mat. Nauk 55, 103–162 (2000). Translation in Russian Math. Surveys 55, 501–558 (2000).

    Article  MathSciNet  Google Scholar 

  5. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  6. Penot, J.-P.: Calculus Without Derivatives. Graduate Texts in Mathematics. 266. Springer, New York (2013).

  7. Arutyunov, A.V.: Covering mappings in metric spaces and fixed points. Dokl. Math. 76, 665–668 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Durea, R., Strugariu, R.: Chain rules for linear openness in general Banach spaces. SIAM J. Optim. 22, 899–913 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Durea, R., Strugariu, R.: Openness stability and implicit multifunction theorems: applications to variational systems. Nonlinear Anal. 75, 1246–1259 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ngai, H.V.; Tron, N.; Théra, M.: Metric regularity of the sum of multifunctions and applications. J. Optim. Theory Appl. (2013). doi:10.1007/s10957-013-0385-6

  11. Dontchev, A.L., Frankowska, H.: Lyusternik-Graves theorem and fixed points. Proc. Amer. Math. Soc. 139, 521–534 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dontchev, A.L., Frankowska, H.: Lyusternik-Graves theorem and fixed points II. J. Convex Anal. 19, 955–973 (2012)

    MATH  MathSciNet  Google Scholar 

  13. Bianchi, M., Kassay, G., Pini, R.: An inverse map result and some applications to sensitivity of generalized equations. J. Math. Anal. Appl. 339, 279–290 (2013)

    Article  MathSciNet  Google Scholar 

  14. Nadler, S.B.: Multivalued contraction mappings. Pacific J. Math. 30, 475–488 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lim, T.C.: On fixed point stability for set-valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110, 436–441 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  17. Bianchi, M., Miglierina, E., Molho, E., Pini, R.: Some results on condition numbers in convex multiobjective optimization. Set-Valued Anal. 21, 47–65 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer, Berlin (2006)

    Google Scholar 

  19. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The work of the second author was supported by a Grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0024. The first and third authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pini.

Additional information

Communicated by Michel Théra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, M., Kassay, G. & Pini, R. Stability Results of Variational Systems Under Openness with Respect to Fixed Sets. J Optim Theory Appl 164, 92–108 (2015). https://doi.org/10.1007/s10957-014-0560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0560-4

Keywords

Mathematics Subject Classification (2000)

Navigation