An Alternating Direction Method for Nash Equilibrium of Two-Person Games with Alternating Offers | Journal of Optimization Theory and Applications Skip to main content
Log in

An Alternating Direction Method for Nash Equilibrium of Two-Person Games with Alternating Offers

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a method for finding a Nash equilibrium of two-person games with alternating offers. The proposed method is referred to as the inexact proximal alternating direction method. In this method, the idea of alternating direction method simulates alternating offers in the game, while the inexact solutions of subproblems can be matched to the assumptions of incomplete information and bounded individual rationality in practice. The convergence of the proposed method is proved under some suitable conditions. Numerical tests show that the proposed method is competitive to the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior (sixtieth Anniversary edition). Princeton University Press, Princeton (2004)

    Google Scholar 

  2. Osborne, M.J., Rubinstein, A. (eds.): A Course in Game Theory. MIT Press, London (1994)

    MATH  Google Scholar 

  3. McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. In: Amman, H., Kendrick, D., Rust, J. (eds.) Handbook of Computational Economics, vol. 1, pp. 87–142. Elsevier, Amsterdam (2000)

    Google Scholar 

  4. von Stengel, B.: Computing equilibria for two-person games. In: Aumann, R., Hart, S. (eds.) Handbook of Game Theory, vol. 3, pp. 1723–1759. North-Holland, Amsterdam (2002)

    Google Scholar 

  5. Antipin, A.: Extra-proximal methods for solving two-person nonzero-sum games. Math. Program., Ser. B 120, 147–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Orbay, H.: Computing Cournot equilibrium through maximization over prices. Econ. Lett. 105, 71–73 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yuan, Y.X.: A trust region algorithm for Nash equilibrium problems. Pac. J. Optim. 7(1), 125–138 (2010)

    Google Scholar 

  8. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, J.Z., Qu, B., Xiu, N.H.: Some projection-like methods for the generalized Nash equilibria. Comput. Optim. Appl. 45, 89–109 (2010)

    Article  MathSciNet  Google Scholar 

  10. Han, D.R., Zhang, H.C., Qian, G., Xu, L.L.: An improved two-step method for solving generalized Nash equilibrium problems. Eur. J. Oper. Res. 216, 613–623 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, L.L., Han, D.R.: A proximal alternating direction method for weakly coupled variational inequalities. Pac. J. Optim. (2012, to appear)

  12. Facchinei, F., Piccialli, V., Sciandrone, M.: Decomposition algorithms for generalized potential games. Comput. Optim. Appl. 50(2), 237–262 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ray, I., Williams, J.: Locational asymmetry and the potential for cooperation on a canal. J. Dev. Econ. 67, 129–155 (2002)

    Article  Google Scholar 

  14. Hart, S.: Nonzero-sum two-person repeated games with incomplete information. Math. Oper. Res. 10(1), 117–153 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diskin, A., Felsenthal, D.: Individual rationality and bargaining. Public Choice 133, 25–29 (2007)

    Article  Google Scholar 

  16. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, B.S., Yang, H., Wang, S.L.: Alternating directions method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106, 337–356 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peaceman, D., Racheord, H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MATH  Google Scholar 

  19. Douglas, J.: On the numerical integration of U xx +U yy =U t by implicit methods. J. Soc. Ind. Appl. Math. 3, 42–65 (1955)

    Article  MATH  Google Scholar 

  20. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two maximal monotone operators. Math. Program., Ser. B 111, 173–199 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fukushima, M.: Application of the alternating direction method of multipliers to separable convex programming problems. Comput. Optim. Appl. 1, 93–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, B.S., Liao, L.Z., Han, D.R., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program., Ser. A 92, 103–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tseng, P.: Alternating projection-proximal methods for convex programming and variational inequalities. SIAM J. Optim. 7, 951–965 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Facchinei, F., Fischer, A., Piccialli, V.: Generalized Nash equilibrium problems and Newton methods. Math. Program. 117, 163–194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized Nash equilibrium problems. SIAM J. Optim. 20, 2228–2253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krawczyk, J., Uryasev, S.: Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5, 63–73 (2000)

    Article  Google Scholar 

  28. De Marco, G., Morgan, J.: Slightly altruistic equilibria. J. Optim. Theory Appl. 137, 347–362 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (61170308), the Natural Science Foundation of FuJian Province (2011J01008), and FuJian Province Education Department (JA11033). The authors are very grateful to the editor and two anonymous referees for their constructive comments which helped improving the quality of the manuscript greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Peng.

Additional information

Communicated by Liqun Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Z., Zhu, W. An Alternating Direction Method for Nash Equilibrium of Two-Person Games with Alternating Offers. J Optim Theory Appl 157, 533–551 (2013). https://doi.org/10.1007/s10957-012-0165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0165-8

Keywords

Navigation