Abstract
This paper deals with zero-sum stochastic differential games with long-run average payoffs. Our main objective is to give conditions for existence and characterization of bias and overtaking optimal equilibria. To this end, first we characterize the family of optimal average payoff strategies. Then, within this family, we impose suitable conditions to determine the subfamilies of bias and overtaking equilibria. A key step to obtain these facts is to show the existence of solutions to the average payoff optimality equations. This is done by the usual “vanishing discount” approach. Finally, a zero-sum game associated to a certain manufacturing process illustrates our results.
Similar content being viewed by others
References
Borkar, V.S., Ghosh, M.K.: Stochastic differential games: occupation measure based approach. J. Optim. Theory Appl. 73, 359–385 (1992). Correction: 88, 251–252 (1996)
Kushner, H.J.: Numerical approximations for stochastic differential games: the ergodic case. SIAM J. Control Optim. 42, 1911–1933 (2003)
Ramsey, F.P.: A mathematical theory of savings. Econ. J. 38, 543–559 (1928)
Atsumi, H.: Neoclassical growth and the efficient program of capital accumulation. Rev. Econ. Stud. 32, 127–136 (1965)
von Weizsäcker, C.C.: Existence of optimal programs of accumulation for an infinite horizon. Rev. Econ. Stud. 32, 85–104 (1965)
Brock, W.A.: Differential games with active and passive variables. In: Henn, R., Moeschlin, O. (eds.) Mathematical Economics and Game Theory: Essays in Honor of Oscar Morgenstern, pp. 34–52. Springer, Berlin (1977)
Rubinstein, A.: Equilibrium in supergames with the overtaking criterion. J. Econ. Theory 21, 1–9 (1979)
Carlson, D.: Normalized overtaking Nash equilibrium for a class of distributed parameter dynamic games. In: Nowak, A.S., Swajowski, K. (eds.) Advances in Dynamic Games. Birkhauser, Boston (2005)
Carlson, D., Haurie, A.: A turnpike theory for infinite horizon open-loop differential games with decoupled controls. In: Olsder, G.J. (ed.) New Trends in Dynamic Games and Applications. Annals of the ISDG, vol. 3, pp. 353–376. Birkhäuser, Boston (1995)
Nowak, A.S.: Equilibrium in a dynamic game of capital accumulation with the overtaking criterion. Econ. Lett. 99, 233–237 (2008)
Nowak, A.S., Vega-Amaya, O.: A counterexample on overtaking optimality. Math. Methods Oper. Res. 49, 435–439 (1998)
Nowak, A.S.: Sensitive equilibria for ergodic stochastic games with countable state spaces. Math. Methods Oper. Res. 50, 65–76 (1999)
Nowak, A.S.: Optimal strategies in a class of zero-sum ergodic stochastic games. Math. Methods Oper. Res. 50, 399–419 (1999)
Jasso-Fuentes, H., Hernández-Lerma, O.: Characterizations of overtaking optimality for controlled diffusion processes. Appl. Math. Optim. 57, 349–369 (2008)
Prieto-Rumeau, T., Hernández-Lerma, O.: Bias and overtaking equilibria for zero-sum continuous-time Markov games. Math. Methods Oper. Res. 61, 437–454 (2005)
Arapostathis, A., Borkar, V.S.: Uniform recurrence properties of controlled diffusions and applications to optimal control. SIAM J. Control Optim. 48, 4181–4223 (2010)
Oksendal, B.: Stochatic Differential Equations: An Introduction with Applications. Springer, New York (1995)
Ghosh, M.K., Arapostathis, A., Marcus, S.I.: Optimal control of switching diffusions with applications to flexible manufacturing systems. SIAM J. Control Optim. 31, 1183–1204 (1993)
Ghosh, M.K., Arapostathis, A., Marcus, S.I.: Ergodic control of switching diffusions. SIAM J. Control Optim. 35, 1962–1988 (1997)
Bhatt, A.G., Karandikar, R.L.: Invariant measures and evolution equations for Markov processes. Ann. Probab. 21, 2246–2268 (1993)
Klebaner, F.C.: Introduction to Stochastic Calculus with Applications, 2nd edn. Imperial College Press, London (2005)
Fan, K.: Minimax theorems. Proc. Natl. Acad. Sci. USA 39, 32–47 (1953)
Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)
Bensoussan, A.: Perturbation Methods in Optimal Control. Wiley, New York (1998)
Morimoto, H., Okada, M.: Some results on the Bellman equation of ergodic control. SIAM J. Control Optim. 38, 159–174 (1999)
López-Barrientos, J.D., Escobedo-Trujillo, B.A., Hernández-Lerma, O.: Zero-sum stochastic differential games with discounted payoffs. Submitted (2011)
Schäl, M.: Conditions for optimality and for the limit of n-stage optimal policies to be optimal. Z. Wahrs. Verw. Gerb. 32, 179–196 (1975)
Borkar, V.S., Ghosh, M.K.: Ergodic control of multidimensional diffusions II: adaptive control. Appl. Math. Optim. 21, 191–220 (1990)
Hashemi, S.N., Heunis, A.J.: On the Poisson equation for singular diffusions. Stochastics 77, 155–189 (2005)
Jasso-Fuentes, H., Hernández-Lerma, O.: Blackwell optimality for controlled diffusion processes. J. Appl. Probab. 46, 372–391 (2009)
Akella, R., Kumar, P.R.: Optimal control of production rate in a failure prone manufacturing system. IEEE Trans. Autom. Control 31, 116–126 (1985)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Heidelberg (1998). Reprinted version
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Negash G. Medhin.
Rights and permissions
About this article
Cite this article
Escobedo-Trujillo, B., López-Barrientos, D. & Hernández-Lerma, O. Bias and Overtaking Equilibria for Zero-Sum Stochastic Differential Games. J Optim Theory Appl 153, 662–687 (2012). https://doi.org/10.1007/s10957-011-9974-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-011-9974-4