Optimization of Measure-Driven Hybrid Systems | Journal of Optimization Theory and Applications
Skip to main content

Optimization of Measure-Driven Hybrid Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study an optimal control problem for a state-dependent impulse system described by a measure differential equation. A specific time reparameterization technique is developed to reduce the impulsive control problem to the one with bounded controls. Necessary conditions of optimality are obtained by interpreting the Maximum Principle in the reduced problem. An impulsive control improvement scheme is outlined. The results of numeric simulation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haddad, W., Chellaboina, V., Nersesov, S.: Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  2. Branicky, M., Borkar, V., Mitter, S.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Autom. Control 43(1), 31–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Systems. Springer, London (2000)

    MATH  Google Scholar 

  4. Kurzhanski, A., Tochilin, P.: Impulse controls in models of hybrid systems. Differ. Equ. 45(5), 731–742 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Miller, B., Rubinovich, E.: Impulsive Control in Continuous and Discrete-Continuous Systems. (Foundations of the Hybrid Systems Theory). Kluwer Academic/Plenum, New York (2003)

    Book  Google Scholar 

  6. Aubin, J.-P.: Impulse Differential Equations and Hybrid Systems: A Viability Approach. Lecture Notes. University of California, Berkeley (2000)

    Google Scholar 

  7. Pereira, F., Silva, G.: Necessary conditions of optimality for vector-valued impulsive control problems. Syst. Control Lett. 40, 205–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dykhta, V., Samsonyuk, O.: Optimal Impulse Control with Applications. Fizmathlit, Moscow (2000) (in Russian)

    Google Scholar 

  9. Miller, B., Bentsman, J.: Optimal control problems in hybrid systems with active singularities. Nonlinear Anal. 65, 999–1017 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arutyunov, A., Karamzin, D., Pereira, F.: A nondegenerate Maximum Principle for the impulsive control problem with state constraints. SIAM J. Control Optim. 43(5), 1812–1843 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bressan, A., Rampazzo, F.: Impulsive control systems without commutativity assumptions. J. Optim. Theory Appl. 81(3), 435–457 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Silva, G., Vinter, R.: Necessary conditions for optimal impulsive control problems. SIAM J. Control Optim. 35, 1829–1846 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vinter, R., Pereira, F.: A Maximum Principle for optimal processes with discontinuous trajectories. SIAM J. Control Optim. 26, 205–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zavalischin, S., Sesekin, A.: Dynamic Impulse Systems: Theory and Applications. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  15. Goncharova, E., Staritsyn, M.: Control improvement method for impulsive systems. J. Comput. Syst. Sci. Int. 49(6), 883–890 (2010)

    Article  MathSciNet  Google Scholar 

  16. Yunt, K., Glocker, Ch.: Trajectory optimization of hybrid mechanical systems using SUMT. In: IEEE Proc. of Advanced Motion Control, pp. 665—671, Istanbul (2006)

    Google Scholar 

  17. Goncharova, E., Staritsyn, M.: Time reparameterization in problems of optimal control of impulsive hybrid systems. J. Comput. Syst. Sci. Int. 50(3), 41–51 (2011)

    Article  Google Scholar 

  18. Lee, E., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York (1967)

    MATH  Google Scholar 

  19. Ioffe, A., Tikhomirov, V.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  20. Goncharova, E., Ovseevich, A., Staritsyn, M.: Control improvement problem for discrete-continuous dynamic system. Int. J. Math. Stat. 5(A09), 71–82 (2009)

    MathSciNet  Google Scholar 

  21. Goncharova, E., Staritsyn, M.: Gradient algorithms for optimal impulsive control. J. Large-Scale Syst. Control 31, 35–48 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Goncharova.

Additional information

Communicated by F.L. Chernousko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharova, E., Staritsyn, M. Optimization of Measure-Driven Hybrid Systems. J Optim Theory Appl 153, 139–156 (2012). https://doi.org/10.1007/s10957-011-9944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9944-x

Keywords