A Projection-Proximal Point Algorithm for Solving Generalized Variational Inequalities | Journal of Optimization Theory and Applications Skip to main content
Log in

A Projection-Proximal Point Algorithm for Solving Generalized Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, a projection-proximal point method for solving a class of generalized variational inequalities is considered in Hilbert spaces. We investigate a general iterative algorithm, which consists of an inexact proximal point step followed by a suitable orthogonal projection onto a hyperplane. We prove the convergence of the algorithm for a pseudomonotone mapping with weakly upper semicontinuity and weakly compact and convex values. We also analyze the convergence rate of the iterative sequence under some suitable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burachik, R.S., Scheimberg, S.: A proximal point method for the variational inequality problem in Banach spaces. SIAM J. Control Optim. 39, 1633–1649 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Konnov, I.V.: A combined relaxation method for variational inequalities with nonlinear constraints. Math. Program. 80, 239–252 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yao, J.C.: A proximal method for pseudomonotone type variational-like inequalities. Taiwan. J. Math. 2, 497–514 (2006)

    Google Scholar 

  5. Yao, J.C.: Strong convergence theorems for strictly pseudocontractive mappings of Browder–Petryshyn type. Taiwan. J. Math. 3, 837–850 (2006)

    Google Scholar 

  6. Facchinei, F., Pang, J.S.: Finite Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  7. He, Y.R.: A new double projection algorithm for variational inequalities. J. Comput. Appl. Math. 185, 166–173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Marcotte, P.: Application of Khobotov’s algorithm to variational inequalities and network equilibrium. Inf. Syst. Oper. Res. 29, 258–270 (1991)

    MATH  Google Scholar 

  9. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Solodov, M.V., Svaiter, B.F.: A unified framework for some inexact proximal point algorithms. Numer. Funct. Anal. Optim. 22, 1013–1035 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Solodov, M.V., Svaiter, B.F.: Error bounds for proximal point subproblems and associated inexact proximal point algorithms. Math. Program. 88, 371–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krasnoselskii, M.A.: Two observations about the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)

    MathSciNet  Google Scholar 

  13. Martinet, B.: Régularisation d’inéquations variationelles par approximations successives. Rev. Fr. Inform. Rech. Oper. 4, 154–158 (1970)

    MathSciNet  Google Scholar 

  14. Moreau, J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  15. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burke, J.V., Qian, M.: A variable metric proximal point algorithm for monotone operators. SIAM J. Control Optim. 37, 353–375 (1998)

    Article  MathSciNet  Google Scholar 

  17. Cominetti, R.: Coupling the proximal point algorithm with approximation methods. J. Optim. Theory Appl. 95, 581–600 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6, 59–70 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Polyak, B.T.: Introduction to Optimization. Optimization Software Inc. Publications Division, New York (1987)

    Google Scholar 

  20. Ding, X.P., Tan, K.K.: A minimax inequality with application to existence of equilibrium point and fixed point theorems. Colloq. Math. 63, 233–247 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  22. Takahashi, W.: Nonlinear Functional Analysis: Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  23. Solodov, M.V.: Convergence rate analysis of iterative algorithms for solving variational inequality problems. Math. Program. 96, 513–528 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pang, J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)

    MATH  Google Scholar 

  25. Nadler, S.B.: Multi-valued contraction mappings. Pac. J. Math. 30, 475–488 (1969)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Jing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, FQ., Huang, NJ. A Projection-Proximal Point Algorithm for Solving Generalized Variational Inequalities. J Optim Theory Appl 150, 98–117 (2011). https://doi.org/10.1007/s10957-011-9825-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9825-3

Keywords

Navigation