Detection of Atrial Fibrillation from Single Lead ECG Signal Using Multirate Cosine Filter Bank and Deep Neural Network | Journal of Medical Systems Skip to main content
Log in

Detection of Atrial Fibrillation from Single Lead ECG Signal Using Multirate Cosine Filter Bank and Deep Neural Network

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is a cardiac arrhythmia which is characterized based on the irregsular beating of atria, resulting in, the abnormal atrial patterns that are observed in the electrocardiogram (ECG) signal. The early detection of this pathology is very helpful for minimizing the chances of stroke, other heart-related disorders, and coronary artery diseases. This paper proposes a novel method for the detection of AF pathology based on the analysis of the ECG signal. The method adopts a multi-rate cosine filter bank architecture for the evaluation of coefficients from the ECG signal at different subbands, in turn, the Fractional norm (FN) feature is evaluated from the extracted coefficients at each subband. Then, the AF detection is carried out using a deep learning approach known as the Hierarchical Extreme Learning Machine (H-ELM) from the FN features. The proposed method is evaluated by considering normal and AF pathological ECG signals from public databases. The experimental results reveal that the proposed multi-rate cosine filter bank based on FN features is effective for the detection of AF pathology with an accuracy, sensitivity and specificity values of 99.40%, 98.77%, and 100%, respectively. The performance of the proposed diagnostic features of the ECG signal is compared with other existing features for the detection of AF. The low-frequency subband FN features found to be more significant with a difference of the mean values as 0.69 between normal and AF classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Go A. S., Hylek E. M., Phillips K. A., Chang Y., Henault L. E., Selby J. V., Singer D. E.: Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the anticoagulation and risk factors in atrial fibrillation (atria) study. Jama 285 (18): 2370–2375, 2001

    Article  CAS  PubMed  Google Scholar 

  2. D. with the special contribution of the European Heart Rhythm Association (EHRA), E. by the European Association for Cardio-Thoracic Surgery (EACTS), Members A. F., Camm A. J., Kirchhof P., Lip G. Y., Schotten U., Savelieva I., Ernst S., Van Gelder I. C., et al.: Fibrillation: the task force for the management of atrial fibrillation of the european society of cardiology (esc). Europe Heart J. 31 (19): 2369–2429, 2010

    Article  Google Scholar 

  3. Wang T. J., Larson M. G., Levy D., Vasan R. S., Leip E. P., Wolf P. A., D’Agostino R. B., Murabito J. M., Kannel W. B., Benjamin E. J.: Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the framingham heart study. Circulation 107 (23): 2920–2925, 2003

    Article  PubMed  Google Scholar 

  4. Ghosh S. K., Ponnalagu R., Tripathy R., Acharya U. R.: Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with pcg signals. Comput. Biology Med. 118: 103632, 2020

    Article  Google Scholar 

  5. Eswari J. S., Majdoubi J., Naik S., Gupta S., Bit A., Rahimi-Gorji M., Saleem A. (2020) Prediction of stenosis behaviour in artery by neural network and multiple linear regressions. Biomech. Model Mechanobiology, 1–15

  6. Members A. F., Camm A. J., Lip G. Y., De Caterina R., Savelieva I., Atar D., Hohnloser S. H., Hindricks G., Kirchhof P., E. C. for Practice Guidelines (CPG), et al.: 2012 focused update of the esc guidelines for the management of atrial fibrillation: an update of the 2010 esc guidelines for the management of atrial fibrillation developed with the special contribution of the european heart rhythm association. Europe Heart J. 33 (21): 2719–2747, 2012

    Article  Google Scholar 

  7. Chetan A., Tripathy R. K., Dandapat S.: A diagnostic system for detection of atrial and ventricular arrhythmia episodes from electrocardiogram. J. Med. Biological Eng. 38 (2): 304–315 , 2018

    Article  Google Scholar 

  8. Hagiwara Y., Fujita H., Oh S. L., Tan J. H., San Tan R., Ciaccio E. J., Acharya U. R.: Computer-aided diagnosis of atrial fibrillation based on ecg signals: a review. Inform. Sci. 467: 99–114, 2018

    Article  Google Scholar 

  9. Lee J., Reyes B. A., McManus D. D., Maitas O., Chon K. H.: Atrial fibrillation detection using an iphone 4s. IEEE Trans. Biomed. Eng. 60 (1): 203–206, 2012

    Article  PubMed  Google Scholar 

  10. Chen Y., Wang Z., Li Q.: Multi-scale wavelet entropy based method for paroxysmal atrial fibrillation recognition. Space Med. Med. Eng. 26 (5): 352–355, 2013

    Google Scholar 

  11. Maji U., Mitra M., Pal S.: Automatic detection of atrial fibrillation using empirical mode decomposition and statistical approach. Proc. Technol. 10 (1): 45–52, 2013

    Article  Google Scholar 

  12. Ladavich S., Ghoraani B.: Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity. Biomed. Signal Process. Control 18: 274–281, 2015

    Article  Google Scholar 

  13. Martis R. J., Prasad H., Chakraborty C., Ray A. K.: Automated detection of atrial flutter and fibrillation using ecg signals in wavelet framework. J. Mech. Med. Biology 12 (05): 1240023, 2012

    Article  Google Scholar 

  14. Martis R. J., Acharya U. R., Prasad H., Chua C. K., Lim C. M.: Automated detection of atrial fibrillation using bayesian paradigm. Knowl.-Based Syst. 54: 269–275, 2013

    Article  Google Scholar 

  15. Cerutti S., Mainardi L., Porta A., Bianchi A.: Analysis of the dynamics of rr interval series for the detection of atrial fibrillation episodes.. In: 1997 IEEE on Computers in Cardiology, 1997, pp 77–80

  16. Tateno K., Glass L.: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of rr and δ rr intervals. Med. Biological Eng. Comput. 39 (6): 664–671 , 2001

    Article  CAS  Google Scholar 

  17. Kumar M., Pachori R. B., Acharya U. R.: Automated diagnosis of atrial fibrillation ecg signals using entropy features extracted from flexible analytic wavelet transform. Biocybern. Biomed. Eng. 38 (3): 564–573, 2018

    Article  Google Scholar 

  18. Athif M., Yasawardene P. C., Daluwatte C.: Detecting atrial fibrillation from short single lead ecgs using statistical and morphological features. Physiolog. Measure. 39 (6): 064002, 2018

    Article  Google Scholar 

  19. Gupta A., Singh P., Karlekar M.: A novel signal modeling approach for classification of seizure and seizure-free eeg signals. IEEE Trans. Neural Syst. Rehabilitation Eng. 26 (5): 925–935, 2018

    Article  Google Scholar 

  20. Kirchhof P., Benussi S., Kotecha D., Ahlsson A., Atar D., Casadei B., Castella M., Diener H. -C., Heidbuchel H., Hendriks J., et al.: 2016 esc guidelines for the management of atrial fibrillation developed in collaboration with eacts. Europe J. Cardio-Thoracic Surgery 50 (5): e1–e88, 2016

    Article  Google Scholar 

  21. Ravì D., Wong C., Deligianni F., Berthelot M., Andreu-Perez J., Lo B., Yang G. -Z.: Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21 (1): 4–21, 2016

    Article  PubMed  Google Scholar 

  22. Faust O., Hagiwara Y., Hong T. J., Lih O. S., Acharya U. R.: Deep learning for healthcare applications based on physiological signals: a review. Comput. Method Program Biomed. 161: 1–13, 2018

    Article  Google Scholar 

  23. Andreotti F., Carr O., Pimentel M. A., Mahdi A., De Vos M.: Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ecg.. In: 2017 IEEE Computing in Cardiology (CinC), 2017, pp 1–4

  24. Tang J., Deng C., Huang G. -B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn Syst. 27 (4): 809–821, 2015

    Article  PubMed  Google Scholar 

  25. Zou H., Lu X., Jiang H., Xie L.: A fast and precise indoor localization algorithm based on an online sequential extreme learning machine. Sensors 15 (1): 1804–1824, 2015

    Article  PubMed  Google Scholar 

  26. Sharma J., Kumar V., Ayub S., Saini J.: Uniform sampling of ecg waveform of mit-bih normal sinus rhythm database at desired intervals. Int. J. Comput. Appl. 50: 15, 2012

    Google Scholar 

  27. Wang B., Tang L., Yang J., Zhao B., Wang S.: Visual tracking based on extreme learning machine and sparse representation. Sensors 15 (10): 26877–26905, 2015

    Article  PubMed  Google Scholar 

  28. Moody G. B., Mark R. G.: The impact of the mit-bih arrhythmia database. IEEE Eng. Med. Biol. Mag. 20 (3): 45–50, 2001

    Article  CAS  PubMed  Google Scholar 

  29. Moody G. B., Mark R. G.: The mit-bih arrhythmia database on cd-rom and software for use with it.. In: 1990 IEEE on Proceedings Computers in Cardiology, 1990, pp 185–188

  30. Goldberger A. L., Amaral L. A., Glass L., Hausdorff J. M., Ivanov P. C., Mark R. G., Mietus J. E., Moody G. B., Peng C. -K., Stanley H. E.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101 (23): e215–e220, 2000

    Article  CAS  PubMed  Google Scholar 

  31. Mark R., Schluter P., Moody G., Devlin P., Chernoff D.: An annotated ecg database for evaluating arrhythmia detectors. IEEE Trans. Biomed. Eng. 29: 600–600, 1982

    Google Scholar 

  32. Clifford G. D., Liu C., Moody B., Li-wei H. L., Silva I., Li Q., Johnson A., Mark R. G.: Af classification from a short single lead ecg recording: the physionet/computing in cardiology challenge 2017.. In: 2017 IEEE on Computing in Cardiology (CinC), 2017, pp 1–4

  33. Sharma L., Tripathy R., Dandapat S.: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction. IEEE Trans. Biomed. Eng. 62 (7): 1827–1837, 2015

    Article  CAS  PubMed  Google Scholar 

  34. Tripathy R. K., Zamora-Mendez A., de la O S., José A., Paternina M. R. A., Arrieta J. G., Naik G. R.: Detection of life threatening ventricular arrhythmia using digital taylor fourier transform. Frontier Phys. 9: 722, 2018

    Article  Google Scholar 

  35. Tripathy R., Acharya U. R.: Use of features from rr-time series and eeg signals for automated classification of sleep stages in deep neural network framework. Biocybern. Biomed. Eng. 38 (4): 890–902, 2018

    Article  Google Scholar 

  36. Tripathy R. K., Bhattacharyya A., Pachori R. B.: A novel approach for detection of myocardial infarction from ecg signals of multiple electrodes. IEEE Sens. J. 19 (12): 4509–4517, 2019

    Article  Google Scholar 

  37. Bullen P. S.: Handbook of means and their inequalities, vol 560 Berlin: Springer Science & Business Media, 2013

    Google Scholar 

  38. Nakagawa S., Cuthill I. C.: Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Rev. 82 (4): 591–605, 2007

    Article  Google Scholar 

  39. Zhu W., Miao J., Qing L., Huang G. -B.: Hierarchical extreme learning machine for unsupervised representation learning.. In: 2015 IEEE of International Joint Conference on Neural Networks (IJCNN), 2015, pp 1–8

  40. Tereshchenko L. G., Josephson M. E.: Frequency content and characteristics of ventricular conduction. J. Electrocardiology 48 (6): 933–937, 2015

    Article  Google Scholar 

  41. Goldberger A. L., Gold-berger E.: Clinical electrocardiography, a simplified approach. Critical Care Med. 9 (12): 891–892, 1981

    Article  Google Scholar 

  42. Stridh M., Sornmo L., Meurling C. J., Olsson S. B.: Characterization of atrial fibrillation using the surface ecg: time-dependent spectral properties. IEEE Trans. Biomed. Eng. 48 (1): 19–27, 2001

    Article  CAS  PubMed  Google Scholar 

  43. Babaeizadeh S., Gregg R. E., Helfenbein E. D., Lindauer J. M., Zhou S. H.: Improvements in atrial fibrillation detection for real-time monitoring. J. Electrocardiology 42 (6): 522–526, 2009

    Article  Google Scholar 

  44. Lee J., Nam Y., McManus D. D., Chon K. H.: Time-varying coherence function for atrial fibrillation detection. IEEE Trans. Biomed. Eng. 60 (10): 2783–2793, 2013

    Article  PubMed  Google Scholar 

  45. Cui X., Chang E., Yang W. -H., Jiang B. C., Yang A. C., Peng C. -K.: Automated detection of paroxysmal atrial fibrillation using an information-based similarity approach. Entropy 19 (12): 677, 2017

    Article  Google Scholar 

  46. Tripathy R., Paternina M. R. A., Arrieta J. G., Pattanaik P.: Automated detection of atrial fibrillation ecg signals using two stage vmd and atrial fibrillation diagnosis index. J Mech. Med. Biology 17 (07): 1740044, 2017

    Article  Google Scholar 

  47. Wang J., Wang P., Wang S.: Automated detection of atrial fibrillation in ecg signals based on wavelet packet transform and correlation function of random process. Biomed. Signal Process. Control 55: 101662, 2020

    Article  Google Scholar 

  48. Fan X., Yao Q., Cai Y., Miao F., Sun F., Li Y.: Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ecg recordings. IEEE J Biomed. Health Inform. 22 (6): 1744–1753, 2018

    Article  PubMed  Google Scholar 

  49. Pourbabaee B., Roshtkhari M. J., Khorasani K.: Deep convolutional neural networks and learning ecg features for screening paroxysmal atrial fibrillation patients. IEEE Trans. Syst. Man Cybern. Syst. 48 (12): 2095–2104, 2018

    Article  Google Scholar 

  50. Yao Q., Wang R., Fan X., Liu J., Li Y.: Multi-class arrhythmia detection from 12-lead varied-length ecg using attention-based time-incremental convolutional neural network. Inform. Fusion 53: 174–182, 2020

    Article  Google Scholar 

  51. Tripathy R. K., Bhattacharyya A., Pachori R. B.: Localization of myocardial infarction from multi-lead ecg signals using multiscale analysis and convolutional neural network. IEEE Sensors J. 19 (23): 11437–11448, 2019

    Article  Google Scholar 

  52. De Vos C. B., Breithardt G., Camm A. J., Dorian P., Kowey P. R., Le Heuzey J. -Y., Naditch-Brûlé L., Prystowsky E. N., Schwartz P. J., Torp-Pedersen C., et al.: Progression of atrial fibrillation in the registry on cardiac rhythm disorders assessing the control of atrial fibrillation cohort: clinical correlates and the effect of rhythm-control therapy. Amer. Heart J. 163 (5): 887–893, 2012

    Article  PubMed  Google Scholar 

Download references

Funding

This work has been funded by outstanding potential for excellence in research and academics (OPERA) award, BITS Pilani with grant number as FR/SCM/150618/EEE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Tripathy.

Ethics declarations

Conflict of interests

RK Tripathy has received research grants from BITS Pilani, Hyderabad Campus. SK Ghosh declares that he has no conflict of interest. Mario A. Paternina declares that he has no conflict of interest. Juan J. Arrieta declares that he has no conflict of interest., Alexandro Zamora-Mendez declares that he has no conflict of interest. Ganesh R. Naik declares that he has no conflict of interest.

Additional information

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. However, authors have used ECG signals from various public databases. We have cited the references for the public databases in the manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S.K., Tripathy, R.K., Paternina, M.R.A. et al. Detection of Atrial Fibrillation from Single Lead ECG Signal Using Multirate Cosine Filter Bank and Deep Neural Network. J Med Syst 44, 114 (2020). https://doi.org/10.1007/s10916-020-01565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-020-01565-y

Keywords

Navigation