Research on Interpolation Methods in Medical Image Processing | Journal of Medical Systems Skip to main content
Log in

Research on Interpolation Methods in Medical Image Processing

  • ORIGINAL PAPER
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Image interpolation is widely used for the field of medical image processing. In this paper, interpolation methods are divided into three groups: filter interpolation, ordinary interpolation and general partial volume interpolation. Some commonly-used filter methods for image interpolation are pioneered, but the interpolation effects need to be further improved. When analyzing and discussing ordinary interpolation, many asymmetrical kernel interpolation methods are proposed. Compared with symmetrical kernel ones, the former are have some advantages. After analyzing the partial volume and generalized partial volume estimation interpolations, the new concept and constraint conditions of the general partial volume interpolation are defined, and several new partial volume interpolation functions are derived. By performing the experiments of image scaling, rotation and self-registration, the interpolation methods mentioned in this paper are compared in the entropy, peak signal-to-noise ratio, cross entropy, normalized cross-correlation coefficient and running time. Among the filter interpolation methods, the median and B-spline filter interpolations have a relatively better interpolating performance. Among the ordinary interpolation methods, on the whole, the symmetrical cubic kernel interpolations demonstrate a strong advantage, especially the symmetrical cubic B-spline interpolation. However, we have to mention that they are very time-consuming and have lower time efficiency. As for the general partial volume interpolation methods, from the total error of image self-registration, the symmetrical interpolations provide certain superiority; but considering the processing efficiency, the asymmetrical interpolations are better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54

Similar content being viewed by others

References

  1. Rowland, S. W., Computer implementation of image reconstruction formulas. In: Herman, G. T. (Ed.), Image Reconstruction from Projections: Implementation and Applications. Springer-Verlag, Berlin, pp. 9–70, 1979.

    Chapter  Google Scholar 

  2. Parker, J. A., Kenyon, R. V., and Troxel, D. E., Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imaging MI-2:31–390, 1983.

    Article  Google Scholar 

  3. Maeland, E., On the comparison of interpolation methods. IEEE Trans. Med. Imaging 7(3):213–217, 1988.

    Article  Google Scholar 

  4. Hou, H. S., and Andrews, H. C., Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoust. Speech Signal Process. 26(6):508–517, 1978.

    Article  MATH  Google Scholar 

  5. Lehmann, T. M., Gonner, C., and Spitzer, K., Survey: interpolation methods in medical image processing. IEEE Trans. Med. Imaging 18(11):1049–1075, 1999.

    Article  Google Scholar 

  6. Grevera, G. J., Udupa, J. K., and Miki, Y., A task-specific evaluation of three-dimensional image interpolation techniques. IEEE Trans. Med. Imaging 18(2):137–143, 1999.

    Article  Google Scholar 

  7. Stytz, M. R., and Rparrott, R. W., Using kriging for 3D medical imaging. Comput. Med. Imaging Graph. 17(6):21–442, 1993.

    Article  Google Scholar 

  8. Raya, S. P., and Udupa, J. K., Shape-based interpolation of multidimensional objects. IEEE Trans. Med. Imaging 9(1):32–42, 1990.

    Article  Google Scholar 

  9. Higgins, W. E., Morice, C., and Ritman, E. L., Shape-based interpolation of tree-like structures in three-dimensional images. IEEE Trans. Med. Imaging 12(3):439–450, 1993.

    Article  Google Scholar 

  10. Goshtasby, A., Truner, D. A., and Ackerman, L. V., Matching of tomographic slices for interpolation. IEEE Trans. Med. Imaging 11(4):507–516, 1992.

    Article  Google Scholar 

  11. Shih, W. S. V., Lin, W. C., and Chen, C. T., Morphologic field morphing: Contour model-guided image interpolation. Int. J. Imaging Syst. Technol. 8(5):480–490, 1999.

    Article  Google Scholar 

  12. Herman, G. T., Zheng, J., and Bucholtz, G. A., Shape-based interpolation. IEEE Comput. Graph. Appl. 12(3):69–79, 1992.

    Article  Google Scholar 

  13. Grevera, G. J., and Udupa, J. K., Shape-based interpolation of multidimensional grey-level images. IEEE Trans. Med. Imaging 15(6):881–892, 1996.

    Article  Google Scholar 

  14. Evans, O. D., and Kim, Y., Efficient implementation of image warping on a multimedia processor. Real-Time Imaging 4(6):417–428, 1998.

    Article  Google Scholar 

  15. Unser, M., Aldroubi, A., and Eden, M., Fast B-spline transforms for continuous image representation andinterpolation. IEEE Trans. Pattern Anal. Mach. Intell. 13(3):277–285, 1991.

    Article  Google Scholar 

  16. Schultz, R. R., and Stevenson, R. L., A Bayesian approach to image expansion for improved definition. IEEE Trans. Image Process. 3(3):233–242, 1994.

    Article  Google Scholar 

  17. Thurnhofer, S., and Mitra, S., Edge-enhanced image zooming. Opt. Eng. 35(7):1862–1870, 1996.

    Article  Google Scholar 

  18. Appledorn, C. R., A new approach to the interpolation of sampled data. IEEE Trans. Med. Imaging 15(3):369–376, 1996.

    Article  Google Scholar 

  19. Dodgson, N. A., Quadratic interpolation for image resampling. IEEE Trans. Image Process. 6(9):1322–1326, 1997.

    Article  Google Scholar 

  20. Shi, J. Z., and Reichenbach, S. E., Image interpolation by two-dimensional parametric cubic convolution. IEEE Trans. Image Process. 15(7):1857–1870, 2006.

    Article  Google Scholar 

  21. Anastasios, R., and Petros, M., Vector-valued image interpolation by an anisotropic diffusion-projection PDE. Lect. Notes Comput. Sci. 4485:104–115, 2007.

    Article  Google Scholar 

  22. Chang, S. G., Cvetkovic, Z., Vetterli, M., Locally adaptive wavelet-based image interpolation. IEEE Trans. Image Process. 15(6), 2006.

  23. Chen, M. J., Huang, C. H., and Lee, W. L., A fast edge-oriented algorithm for image interpolation. Image Vis. Comput. 23(9):791–798, 2005.

    Article  Google Scholar 

  24. Liu, J. M., and Nowinski, L. W. L., A hybrid approach to shape-based interpolation of stereotactic atlases of the human brain. Neuroinformatics 4(2):177–198, 2006.

    Article  Google Scholar 

  25. Hong, S. H., Park, R. H., Yang, S. J., et al., Image interpolation using interpolative classified vector quantization. Image Vis. Comput. 26(2):228–239, 2008.

    Article  Google Scholar 

  26. Zhang, X. J., and Wu, X. L., Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Trans. Image Process. 17(6):887–896, 2008.

    Article  MathSciNet  Google Scholar 

  27. Maes, F., Collignon, A., Vandermeulen, D., et al., Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2):187–198, 1997.

    Article  Google Scholar 

  28. Chen, H. M., and Varshney, P. K., Mutual information-based CTMR brain image registration using generalized partial volume joint histogram estimation. IEEE Trans. Med. Imaging 22(9):1111–1119, 2003.

    Article  Google Scholar 

  29. Collignon, A., Maes, F., Delaere, D., et al., Automated multimodality image registration using information theory, in proc. Int. Conf. Information Processing in Medical Imaging: Computational Imaging and Vision, Vol.3, pp. 263–274, 1995.

  30. Tsao, J., Interpolation artifacts in multimodality image registration based on maximization of mutual information. IEEE Trans. Med. Imaging 22(7):854–864, 2003.

    Article  MathSciNet  Google Scholar 

  31. Unser, M., Aldroubi, A., and Eden, M., B-spline signal processing: Part-I theory. IEEE Trans. Signal Process. 41(2):821–833, 1993.

    Article  MATH  Google Scholar 

  32. Unser, M., Aldroubi, A., and Eden, M., B-spline signal processing: Part-II efficiency design and applications. IEEE Trans. Signal Process. 41(2):834–848, 1993.

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This work is supported by Outstanding Young Scientific Research Fund of Hunan Provincial Education Department, P.R.China (No.09B071) and supported by the Foundation of 11th Five-year Plan for Key Construction Academic Subject (Optics) of Hunan Province, P.R.China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-sen Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Ms., Yang, Xl. & Tang, Jt. Research on Interpolation Methods in Medical Image Processing. J Med Syst 36, 777–807 (2012). https://doi.org/10.1007/s10916-010-9544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9544-6

Keywords

Navigation