Abstract
In this paper, a Quadrature by Two Expansions (QB2X) numerical integration technique is developed for the single and double layer potentials of the Helmholtz equation in two dimensions. The QB2X method uses both local complex Taylor expansions and plane wave type expansions to achieve a resulting representation which is numerically accurate for all target points inside a leaf box in the fast multipole method (FMM) hierarchical tree structure. The QB2X method explicitly includes nonlinear dependency of the boundary geometry in the plane wave expansions, thereby providing for higher-order representations of both the boundary geometry and density functions in the integrand, with its convergence following standard FMM error analysis. Numerical results are presented to demonstrate the performance of the QB2X method for Helmholtz layer potentials using one expansion center for the entire FMM-leaf box for both flat and curved boundaries with various densities.
Similar content being viewed by others
Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Lewis, A., Taha, H., Strinkovski, A., Manevitch, A., Khatchatouriants, A., Dekhter, R., Ammann, E.: Near-field optics: from subwavelength illumination to nanometric shadowing. Nat. Biotechnol. 21(11), 1378–1386 (2003)
Khattak, H.K., Bianucci, P., Slepkov, A.D.: Linking plasma formation in grapes to microwave resonances of aqueous dimers. Proc. Natl. Acad. Sci. 116(10), 4000–4005 (2019)
Tsantili, I.C., Cho, M.H., Cai, W., Karniadakis, G.E.: A computational stochastic methodology for the design of random meta-materials under geometric constraints. SIAM J. Sci. Comput. 40(2), B353–B378 (2018)
Alpert, B.K.: Hybrid gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 20(5), 1551–1584 (1999)
Kapur, S., Rokhlin, V.: High-order corrected trapezoidal quadrature rules for singular functions. SIAM J. Numer. Anal. 34(4), 1331–1356 (1997)
Wu, B., Martinsson, P.G.: Zeta correction: a new approach to constructing corrected trapezoidal quadrature rules for singular integral operators. Adv. Comput. Math. 47(3), 1–21 (2021)
Bremer, J., Gimbutas, Z., Rokhlin, V.: A nonlinear optimization procedure for generalized gaussian quadratures. SIAM J. Sci. Comput. 32(4), 1761–1788 (2010)
Yarvin, N., Rokhlin, V.: Generalized gaussian quadratures and singular value decompositions of integral operators. SIAM J. Sci. Comput. 20(2), 699–718 (1998)
Bruno, O.P., Kunyansky, L.A.: A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169(1), 80–110 (2001)
Duffy, M.G.: Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19(6), 1260–1262 (1982)
Beale, J.T., Lai, M.C.: A method for computing nearly singular integrals. SIAM J. Numer. Anal. 38(6), 1902–1925 (2001)
Klöckner, A., Barnett, A., Greengard, L., O’Neil, M.: Quadrature by expansion: A new method for the evaluation of layer potentials. J. Comput. Phys. 252, 332–349 (2013)
Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, vol. 55. US Government printing office (1964)
Cho, M.H., Cai, W.: A wideband fast multipole method for the two-dimensional complex helmholtz equation. Comput. Phys. Commun. 181(12), 2086–2090 (2010)
Rokhlin, V.: Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86(2), 414–439 (1990)
Rachh, M., Klöckner, A., O’Neil, M.: Fast algorithms for quadrature by expansion i: globally valid expansions. J. Comput. Phys. 345, 706–731 (2017)
Adcock, B., Huybrechs, D.: Frames and numerical approximation. SIAM Rev. 61(3), 443–473 (2019)
Casazza, P.G., Kutyniok, G.: Finite Frames: Theory and Applications. Springer (2012)
Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic fourier series. Trans. Am. Math. Soc. 72(2), 341–366 (1952)
Colton, D.L., Kress, R., Kress, R.: Inverse acoustic and electromagnetic scattering theory, vol. 93. Springer (1998)
Ding, L., Huang, J., Marzuola, J.L., Tang, Z.: Quadrature by two expansions: Evaluating laplace layer potentials using complex polynomial and plane wave expansions. J. Comput. Phys. 428, 109963 (2021)
Matthysen, R., Huybrechs, D.: Function approximation on arbitrary domains using fourier extension frames. SIAM J. Numer. Anal. 56(3), 1360–1385 (2018)
Kress, R.: Linear Integral Equations, vol. 82. Springer Science & Business Media (2013)
Boyd, J.P.: A comparison of numerical algorithms for Fourier extension of the first, second, and third kinds. J. Comput. Phys. 178(1), 118–160 (2002)
Bruno, O.P., Han, Y., Pohlman, M.M.: Accurate, high-order representation of complex three-dimensional surfaces via Fourier continuation analysis. J. Comput. Phys. 227(2), 1094–1125 (2007)
Huybrechs, D.: On the fourier extension of nonperiodic functions. SIAM J. Numer. Anal. 47(6), 4326–4355 (2010)
Barnett, A.H.: How exponentially ill-conditioned are contiguous submatrices of the Fourier matrix? SIAM Rev. 64(1), 105–131 (2022)
Lozier, D.W.: Nist digital library of mathematical functions. Ann. Math. Artif. Intell. 38, 105–119 (2003)
Olver, F., Lozier, D., Boisvert, R., Clark, C.: Digital library of mathematical functions: Online companion to nist handbook of mathematical functions (cup). National Insitute of Standards and Technology, Gaithersburg (2010)
Wang, T., Yokota, R., Barba, L.A.: ExaFMM: a high-performance fast multipole method library with C++ and python interfaces. J. Open Sour. Softw. 6(61), 3145 (2021)
chunkie: a MATLAB integral equation toolbox. https://github.com/fastalgorithms/chunkie
Kim, M.H., Sutherland, S.: Polynomial root-finding algorithms and branched covers. SIAM J. Comput. 23(2), 415–436 (1994)
Zeng, Z.: Algorithm 835: Multroot—a matlab package for computing polynomial roots and multiplicities. ACM Trans. Math. Softw. (TOMS) 30(2), 218–236 (2004)
Huang, J., Jia, J., Zhang, B.: Fmm-yukawa: an adaptive fast multipole method for screened coulomb interactions. Comput. Phys. Commun. 180(11), 2331–2338 (2009)
Funding
M.H. Cho was supported by NSF grant DMS 2012382 and a grant from the Simons Foundation (No. 404499). J. Huang was supported by NSF grant DMS 2012451.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing Interests
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Weed, J., Ding, L., Huang, J. et al. Quadrature by Two Expansions for Evaluating Helmholtz Layer Potentials. J Sci Comput 95, 96 (2023). https://doi.org/10.1007/s10915-023-02222-5
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-023-02222-5
Keywords
- Layer potentials
- Quadrature by two expansions
- Quadrature by expansion
- Helmholtz equation
- Integral equations