Quadrature by Two Expansions for Evaluating Helmholtz Layer Potentials | Journal of Scientific Computing Skip to main content
Log in

Quadrature by Two Expansions for Evaluating Helmholtz Layer Potentials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a Quadrature by Two Expansions (QB2X) numerical integration technique is developed for the single and double layer potentials of the Helmholtz equation in two dimensions. The QB2X method uses both local complex Taylor expansions and plane wave type expansions to achieve a resulting representation which is numerically accurate for all target points inside a leaf box in the fast multipole method (FMM) hierarchical tree structure. The QB2X method explicitly includes nonlinear dependency of the boundary geometry in the plane wave expansions, thereby providing for higher-order representations of both the boundary geometry and density functions in the integrand, with its convergence following standard FMM error analysis. Numerical results are presented to demonstrate the performance of the QB2X method for Helmholtz layer potentials using one expansion center for the entire FMM-leaf box for both flat and curved boundaries with various densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lewis, A., Taha, H., Strinkovski, A., Manevitch, A., Khatchatouriants, A., Dekhter, R., Ammann, E.: Near-field optics: from subwavelength illumination to nanometric shadowing. Nat. Biotechnol. 21(11), 1378–1386 (2003)

    Article  Google Scholar 

  2. Khattak, H.K., Bianucci, P., Slepkov, A.D.: Linking plasma formation in grapes to microwave resonances of aqueous dimers. Proc. Natl. Acad. Sci. 116(10), 4000–4005 (2019)

    Article  Google Scholar 

  3. Tsantili, I.C., Cho, M.H., Cai, W., Karniadakis, G.E.: A computational stochastic methodology for the design of random meta-materials under geometric constraints. SIAM J. Sci. Comput. 40(2), B353–B378 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alpert, B.K.: Hybrid gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 20(5), 1551–1584 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kapur, S., Rokhlin, V.: High-order corrected trapezoidal quadrature rules for singular functions. SIAM J. Numer. Anal. 34(4), 1331–1356 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, B., Martinsson, P.G.: Zeta correction: a new approach to constructing corrected trapezoidal quadrature rules for singular integral operators. Adv. Comput. Math. 47(3), 1–21 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bremer, J., Gimbutas, Z., Rokhlin, V.: A nonlinear optimization procedure for generalized gaussian quadratures. SIAM J. Sci. Comput. 32(4), 1761–1788 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yarvin, N., Rokhlin, V.: Generalized gaussian quadratures and singular value decompositions of integral operators. SIAM J. Sci. Comput. 20(2), 699–718 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bruno, O.P., Kunyansky, L.A.: A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169(1), 80–110 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duffy, M.G.: Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19(6), 1260–1262 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beale, J.T., Lai, M.C.: A method for computing nearly singular integrals. SIAM J. Numer. Anal. 38(6), 1902–1925 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klöckner, A., Barnett, A., Greengard, L., O’Neil, M.: Quadrature by expansion: A new method for the evaluation of layer potentials. J. Comput. Phys. 252, 332–349 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, vol. 55. US Government printing office (1964)

  14. Cho, M.H., Cai, W.: A wideband fast multipole method for the two-dimensional complex helmholtz equation. Comput. Phys. Commun. 181(12), 2086–2090 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rokhlin, V.: Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86(2), 414–439 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rachh, M., Klöckner, A., O’Neil, M.: Fast algorithms for quadrature by expansion i: globally valid expansions. J. Comput. Phys. 345, 706–731 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Adcock, B., Huybrechs, D.: Frames and numerical approximation. SIAM Rev. 61(3), 443–473 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Casazza, P.G., Kutyniok, G.: Finite Frames: Theory and Applications. Springer (2012)

  19. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic fourier series. Trans. Am. Math. Soc. 72(2), 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  20. Colton, D.L., Kress, R., Kress, R.: Inverse acoustic and electromagnetic scattering theory, vol. 93. Springer (1998)

  21. Ding, L., Huang, J., Marzuola, J.L., Tang, Z.: Quadrature by two expansions: Evaluating laplace layer potentials using complex polynomial and plane wave expansions. J. Comput. Phys. 428, 109963 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Matthysen, R., Huybrechs, D.: Function approximation on arbitrary domains using fourier extension frames. SIAM J. Numer. Anal. 56(3), 1360–1385 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kress, R.: Linear Integral Equations, vol. 82. Springer Science & Business Media (2013)

  24. Boyd, J.P.: A comparison of numerical algorithms for Fourier extension of the first, second, and third kinds. J. Comput. Phys. 178(1), 118–160 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bruno, O.P., Han, Y., Pohlman, M.M.: Accurate, high-order representation of complex three-dimensional surfaces via Fourier continuation analysis. J. Comput. Phys. 227(2), 1094–1125 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huybrechs, D.: On the fourier extension of nonperiodic functions. SIAM J. Numer. Anal. 47(6), 4326–4355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Barnett, A.H.: How exponentially ill-conditioned are contiguous submatrices of the Fourier matrix? SIAM Rev. 64(1), 105–131 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lozier, D.W.: Nist digital library of mathematical functions. Ann. Math. Artif. Intell. 38, 105–119 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Olver, F., Lozier, D., Boisvert, R., Clark, C.: Digital library of mathematical functions: Online companion to nist handbook of mathematical functions (cup). National Insitute of Standards and Technology, Gaithersburg (2010)

  30. Wang, T., Yokota, R., Barba, L.A.: ExaFMM: a high-performance fast multipole method library with C++ and python interfaces. J. Open Sour. Softw. 6(61), 3145 (2021)

    Article  Google Scholar 

  31. chunkie: a MATLAB integral equation toolbox. https://github.com/fastalgorithms/chunkie

  32. Kim, M.H., Sutherland, S.: Polynomial root-finding algorithms and branched covers. SIAM J. Comput. 23(2), 415–436 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zeng, Z.: Algorithm 835: Multroot—a matlab package for computing polynomial roots and multiplicities. ACM Trans. Math. Softw. (TOMS) 30(2), 218–236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Huang, J., Jia, J., Zhang, B.: Fmm-yukawa: an adaptive fast multipole method for screened coulomb interactions. Comput. Phys. Commun. 180(11), 2331–2338 (2009)

    Article  MATH  Google Scholar 

Download references

Funding

M.H. Cho was supported by NSF grant DMS 2012382 and a grant from the Simons Foundation (No. 404499). J. Huang was supported by NSF grant DMS 2012451.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Hyung Cho.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weed, J., Ding, L., Huang, J. et al. Quadrature by Two Expansions for Evaluating Helmholtz Layer Potentials. J Sci Comput 95, 96 (2023). https://doi.org/10.1007/s10915-023-02222-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02222-5

Keywords

Mathematics Subject Classification (2000)

Navigation