Numerical Analysis of the Nonuniform Fast L1 Formula for Nonlinear Time–Space Fractional Parabolic Equations | Journal of Scientific Computing Skip to main content
Log in

Numerical Analysis of the Nonuniform Fast L1 Formula for Nonlinear Time–Space Fractional Parabolic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Basing on the nonuniform fast L1 formula, an efficient numerical scheme is proposed for nonlinear time–space fractional parabolic equations. The stability and convergence of the numerical scheme are rigorously established. The discrete energy dissipation property of the numerical scheme based on graded temporal mesh is given. Finally, several numerical experiments are provided to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Ali, I., Islam, S., Siddique, I., Allah, N.: Some efficient numerical solution of Allen–Cahn equation with non-periodic boundary conditions. Int. J. Nonlinear Sci. 11(3), 380–384 (2011)

    MathSciNet  Google Scholar 

  2. Cheng, X.Y., Li, D., Quan, C., Yang, W.: On a parabolic Sine–Gordon model. Numer. Math. Theor. Methods Appl. 14, 1068–1084 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wazwaz, A., Gorguis, A.: An analytic study of Fisher’s equation by using Adomian decomposition method. Appl. Math. Comput. 154(3), 609–620 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yuan, G.W., Yue, J., Sheng, Z., Shen, L.: The computational method for nonlinear parabolic equation (in Chinese). Sci. Sin. Math. 43, 235–248 (2013)

    Article  MATH  Google Scholar 

  5. Allen, S., Cahn, J.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. Mater. 27, 1085–1095 (1979)

    Article  Google Scholar 

  6. Anderson, D., McFadden, G., Wheeler, A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30(1), 139–165 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002)

    Article  Google Scholar 

  8. Chen, L.Q., Shen, J.: Applications of semi-implicit Fourier-spectral method to phase-field equations. Comput. Phys. Comm. 108, 147–158 (1998)

    Article  MATH  Google Scholar 

  9. Zhou, B.Y., Chen, X.L., Li, D.F.: Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations. J. Sci. Comput. 85, 39 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qin, H.Y., Li, D.F., Zhang, Z.M.: A novel scheme to capture the initial dramatic evolutions of nonlinear subdiffusion equations. J. Sci. Comput. 89, 65 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Song, F.Y., Xu, C.J., Karniadakis, G.K.: A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations. Comput. Methods Appl. Mech. Eng. 305, 376–404 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liao, H.L., Tang, T., Zhou. T.: An energy stable and maximum bound preserving scheme with variable time steps for time fractional Allen–Cahn equation. SIAM J. Sci. Comput. 43(5), A3503–A3526 (2021)

  13. Liao, H.L., Zhu, X., Wang, J.: The variable-step L1 scheme preserving a compatible energy law for time-fractional Allen–Cahn equation. Numer. Math. Theor. Methods Appl. 15(4), 1128–1146 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. A 28(4), 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tang, T., Yu, H., Zhou, T.: On energy dissipation theory and numerical stability for time-fractional phase-field equations. SIAM J. Sci. Comput. 41(6), A3757–A3778 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, B.T., Lazarov, R., Zhou, Z.: Ananalysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Stynes, M., O’Riordan, E., Gracia, J.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liao, H.L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shen, J.Y., Sun, Z.Z., Cao, W.R.: A finite difference scheme on graded meshes for time-fractional nonlinear Korteweg-de Vries equation. Appl. Math. Comput. 361, 752–765 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, J.L., Huang, J.Z., Wang, K., Wang, X.: Error estimate on the tanh meshes for the time fractional diffusion equation. Numer. Methods. Partial. Differ. Equ. 37, 2046–2066 (2021)

    Article  MathSciNet  Google Scholar 

  22. Liao, H.L., McLean, W., Zhang, J.W.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liao, H.L., McLean, W., Zhang, J.W.: A second-order scheme with nonuniform time steps for a linear reaction–subdiffusion problem. Commun. Comput. Phys. 30(2), 567–601 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79, 624–647 (2019)

  25. Xing, Z.Y., Wen, L.P., Wang, W.S.: An efficient difference scheme for time-fractional KdV equation. Comput. Appl. Math. 40, 277 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Duo, S.W., Wyk, H.W., Zhang, Y.Z.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhao, Y.L., Li, M., Ostermann, A., Gu, X.M.: An efficient second-order energy stable BDF scheme for the space fractional Cahn–Hilliard equation. BIT Numer. Math. 61, 1061–1092 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiang, S.D., Zhang, J.W., Qian, Z., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ji, B.Q., Liao, H.L., Zhang, L.M.: Simple maximum principle preserving time-stepping methods for time-fractional Allen–Cahn equation. Adv. Comput. Math. 46, 37 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liao, H.L., Yan, Y.G., Zhang, J.W.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liao, H.L., Tang, T., Zhou, T.: Positive definiteness of real quadratic forms resulting from the variable-step approximation of convolution operators. arXiv:2011.13383v1 (2020)

  32. Ji, B.Q., Zhu, X.H., Liao, H.L.: Energy stability of variable-step L1-type schemes for time-fractional Cahn-Hilliard model. arXiv: 2201.00920v1 (2023) revised in Communications in Mathematical Sciences

  33. Varga, R.S.: Geršgorin and his Circles. Springer, Berlin (2004)

  34. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xing, Z.Y., Wen, L.P., Xiao, H.Y.: A fourth-order conservative difference scheme for the Riesz space-fractional Sine–Gordon equations and its fast implementation. Appl. Numer. Math. 159, 221–238 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu, Y., Zeng, J.L., Hu, S.G.: A fourth-order linearized difference scheme for the coupled space fractional Ginzburg–Landau equation. Adv. Differ. Equ. 2019, 455 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the Scientific Research Fund of Hunan Provincial Education Department of China under Grant (NO.21B0685) and Science and technology planning project of Shaoyang science and Technology Bureau (NO.2020GZ88).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to writing of this paper. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhiyong Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Z., Wen, L. Numerical Analysis of the Nonuniform Fast L1 Formula for Nonlinear Time–Space Fractional Parabolic Equations. J Sci Comput 95, 58 (2023). https://doi.org/10.1007/s10915-023-02186-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02186-6

Keywords

Mathematics Subject Classification

Navigation