Motion by Mean Curvature with Constraints Using a Modified Allen–Cahn Equation | Journal of Scientific Computing Skip to main content
Log in

Motion by Mean Curvature with Constraints Using a Modified Allen–Cahn Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we present a simple and accurate computational scheme for motion by mean curvature with constraints using a modified Allen–Cahn (AC) equation. The modified AC equation contains a nonlinear source term which enforces the constraints such as volume and average mean curvature. We use a linear convex splitting-type method with Fourier spectral method to numerically solve the modified AC equation. We perform several characteristic computational tests to demonstrate the efficiency and accuracy of the proposed method. The computational results confirm the robust and high performance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Materials

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Abueidda, D.W., Al-Rub, R.K.A., Dalaq, A.S., Lee, D.W., Khan, K.A., Jasiuk, I.: Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces. Mech. Mater. 95, 102–115 (2016)

    Article  Google Scholar 

  2. Abueidda, D.W., Bakir, M., Al-Rub, R.K.A., Bergström, J.S., Sobh, N.A., Jasiuk, I.: Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Mater. Des. 122, 255–267 (2017)

    Article  Google Scholar 

  3. Abueidda, D.W., Dalaq, A.S., Al-Rub, R.K.A., Younes, H.A.: Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements. Int. J. Mech. Sci. 92, 80–89 (2015)

    Article  Google Scholar 

  4. Abueidda, D.W., Elhebeary, M., Shiang, C.S.A., Pang, S., Al-Rub, R.K.A., Jasiuk, I.M.: Mechanical properties of 3D printed polymeric Gyroid cellular structures: experimental and finite element study. Mater. Des. 165, 107597 (2019)

    Article  Google Scholar 

  5. Afshar, M., Anaraki, A.P., Montazerian, H., Kadkhodapour, J.: Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures. J. Mech. Behav. Biomed. Mater. 62, 481–494 (2016)

    Article  Google Scholar 

  6. Al-Ketan, O., Abu Al-Rub, R.K.: Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv. Eng. Mater. 21(10), 1900524 (2019)

    Article  Google Scholar 

  7. Al-Ketan, O., Lee, D.W., Rowshan, R., Al-Rub, R.K.A.: Functionally graded and multi-morphology sheet TPMS lattices: design, manufacturing, and mechanical properties. J. Mech. Behav. Biomed. Mater. 102, 103520 (2020)

    Article  Google Scholar 

  8. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  9. Almgren, F.J.: Minimal surface forms. Math. Intell. 4(4), 164 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Andersson, S., Hyde, S.T., Larsson, K., Lidin, S.: Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers. Chem. Rev. 88(1), 221–242 (1988)

    Article  Google Scholar 

  11. Calo, V., Minev, P., Puzyrev, V.: Splitting schemes for phase-field models. Appl. Numer. Math. 156, 192–209 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52(3), 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. EASIM Math. Model. 54, 727–750 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng, K., Qiao, Z., Wang, C.: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability. J. Sci. Comput. 81, 154–185 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheng, K., Wang, C., Wise, S.M., Yue, X.: A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn–Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 69, 1083–1114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Diegel, A.E., Wang, C., Wise, S.M.: Stability and convergence of a second order mixed finite element method for the Cahn–Hilliard equation. IMA J. Numer. Anal. 36, 1867–1897 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feng, J., Fu, J., Shang, C., Lin, Z., Li, B.: Porous scaffold design by solid T-splines and triply periodic minimal surfaces. Comput. Methods Appl. Mech. Eng. 336, 333–352 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng, X., Li, Y.: Analysis of interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow. IMA J. Numer. Anal. 35(4), 1622–1651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, X., Li, Y., Xing, Y.: Analysis of mixed interior penalty discontinuous Galerkin methods for the Cahn–Hilliard equation and the Hele–Shaw flow. SIAM J. Numer. Anal. 54, 825–847 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99, 47–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gandy, P.J., Bardhan, S., Mackay, A.L., Klinowski, J.: Nodal surface approximations to the P, G, D and I-WP triply periodic minimal surfaces. Chem. Phys. Lett. 336(3–4), 187–195 (2001)

    Article  Google Scholar 

  23. Guo, J., Wang, C., Wise, S.M., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commu. Math. Sci. 14, 489–515 (2016)

    Article  MATH  Google Scholar 

  24. Guo, J., Wang, C., Wise, S.M., Yue, X.: An improved error analysis for a second-order numerical scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 388, 113300 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hao, Y., Huang, Q., Wang, C.: A third order BDF energy stable linear scheme for the no-slope-selection thin film model. Commun. Comput. Phys. 29, 905–929 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jung, Y., Chu, K.T., Torquato, S.: A variational level set approach for surface area minimization of triply-periodic surfaces. J. Comput. Phys. 223(2), 711–730 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kapfer, S.C., Hyde, S.T., Mecke, K., Arns, C.H., Schröder-Turk, G.E.: Minimal surface scaffold designs for tissue engineering. Biomaterials 32(29), 6875–6882 (2011)

    Article  Google Scholar 

  28. Kim, J.: A numerical method for the Cahn–Hilliard equation with a variable mobility. Commun. Nonlinear Sci. Numer. Simul. 12(8), 1560–1571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lee, H.G., Kim, J.: Regularized Dirac delta functions for phase field models. Int. J. Numer. Methods Eng. 91(3), 269–288 (2012)

    Article  MATH  Google Scholar 

  30. Li, W., Chen, W., Wang, C., Yan, Y., He, R.: A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. 76(3), 1905–1937 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, X., Shen, J.: Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation. Adv. Comput. Math. 46(3), 48 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Y., Xia, Q., Yoon, S., Lee, C., Lu, B., Kim, J.: Simple and efficient volume merging method for triply periodic minimal structures. Comput. Phys. Commun. 264, 107956 (2021)

    Article  MathSciNet  Google Scholar 

  33. Li, Y., Yu, Q., Fang, W., Xia, B., Kim, J.: A stable second-order BDF scheme for the three-dimensional Cahn–Hilliard–Hele–Shaw system. Adv. Comput. Math. 47(1), 3 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, Z., Li, X.: Step-by-step solving schemes based on scalar auxiliary variable and invariant energy quadratization approaches for gradient flows. Numer. Algorithms 89, 65–86 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, S., Peng, Y.: A local region-based Chan–Vese model for image segmentation. Pattern Recognit. 45(7), 2769–2779 (2012)

    Article  MATH  Google Scholar 

  36. Longley, W., McIntosh, T.J.: A bicontinuous tetrahedral structure in a liquid–crystalline lipid. Nature 303(5918), 612–614 (1983)

    Article  Google Scholar 

  37. Lu, Y., Zhao, W., Cui, Z., Zhu, H., Wu, C.: The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds. J. Mech. Behav. Biomed. Mater. 99, 56–65 (2019)

    Article  Google Scholar 

  38. Nissen, H.U.: Crystal orientation and plate structure in echinoid skeletal units. Science 166(3909), 1150–1152 (1969)

    Article  Google Scholar 

  39. Ranner, T.: A stable finite element method for low inertia undulatory locomotion in three dimensions. Appl. Numer. Math. 156, 422–445 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schwarz, H.A.: Gesammelte Mathematische Abhandlung, vol. 1. Springer, Berlin (1890)

    Book  MATH  Google Scholar 

  41. Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23, 572–602 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, J., Du, Q., Zhang, W.: Uniform \(L^p\)-bound of the Allen–Cahn equation and its numerical discretization. Int. J. Numer. Anal. Mod. 15(1–2), 213–227 (2018)

    MATH  Google Scholar 

  43. Yang, S.D., Lee, H.G., Kim, J.: A phase-field approach for minimizing the area of triply periodic surfaces with volume constraint. Comput. Phys. Commun. 181(6), 1037–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ye, X.C., Lin, X.C., Xiong, J.Y., Wu, H.H., Zhao, G.W., Fang, D.: Electrical properties of 3D printed graphite cellular lattice structures with triply periodic minimal surface architectures. Mater. Res. Express 6(12), 125609 (2019)

    Article  Google Scholar 

  45. Yoo, D.J.: Advanced porous scaffold design using multi-void triply periodic minimal surface models with high surface area to volume ratios. Int. J. Precis. Eng. Manuf. 15(8), 1657–1666 (2014)

    Article  Google Scholar 

  46. Yoo, D.J.: Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int. J. Precis. Eng. Manuf. 12(1), 61–71 (2011)

    Article  Google Scholar 

  47. Yoo, D.J.: Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials 32(31), 7741–7754 (2011)

    Article  Google Scholar 

  48. Zhang, H., Yan, J., Qian, X., Gu, X., Song, S.: On the maximum principle preserving and energy stability of high-order implicit-explicit Runge–Kutta schemes for the space-fractional Allen–Cahn equation. Numer. Algorithms 88, 1309–1336 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, X.Y., Yan, X.C., Fang, G., Liu, M.: Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface. Addit. Manuf. 32, 101015 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for the constructive and helpful comments on the revision of this article.

Funding

C. Lee was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2022R1C1C2003896). H. Kim was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea (NRF-2020R1A6A3A13077105). The corresponding author (J. Kim) was supported by Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, S., Lee, H.G., Li, Y. et al. Motion by Mean Curvature with Constraints Using a Modified Allen–Cahn Equation. J Sci Comput 92, 16 (2022). https://doi.org/10.1007/s10915-022-01862-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01862-3

Keywords

Navigation