Abstract
In this paper, we present a family of two-grid algorithms for semi-linear parabolic interface problems based on Partially penalized immersed finite element discretizations. Optimal a priori error estimates are derived both in the energy norm and \(L^2\) norm, under the standard piecewise \(H^2\) regularity assumption for the exact solution. For the nonlinear right hand side, we investigate two-grid methods base on Newton method. The efficiency of the two-grid methods is confirmed theoretically and numerically.

























Similar content being viewed by others
Data Availability
The data supporting the findings of this study is available within the article and its supplementary materials.
References
Adjerid, S., Chaabane, N., Lin, T.: An immersed discontinuous finite element method for stokes interface problems. Comput. Methods Appl. Mech. Eng. 293, 170–190 (2015)
Ahn, H.T., Shashkov, M.: Multi-material interface reconstruction on generalized polyhedral meshes. J. Comput. Phys. 226(2), 2096–2132 (2007)
Attanayake, C., Senaratne, D.: Convergence of an immersed finite element method for semilinear parabolic interface problems. Appl. Math. Sci. 5(3), 135–147 (2011)
Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing 5(3), 207–213 (1970)
Babuska, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing 5(3), 207–213 (1970)
Camp, B., Lin, T., Lin, Y., Sun, W.: Quadratic immersed finite element spaces and their approximation capabilities. Adv. Comput. Math. 24(1–4), 81–112 (2006)
Chan, K.H., Zhang, K., Zou, J.: Spherical interface dynamos: mathematical theory, finite element approximation, and application. SIAM J. Numer. Anal. 44(5), 1877–1902 (2006)
Chen, L., Wei, H., Wen, M.: An interface-fitted mesh generator and virtual element methods for elliptic interface problems. J. Comput. Phys. 334, 327–348 (2017)
Chen, Y., Huang, Y.: A multilevel method for finite element solutions for singular two-point boundary value problems. Nat. Sci. J. Xiangtan Univ. 16, 23–26 (1994)
Chen, Y., Li, Q., Wang, Y., Huang, Y.: Two-grid methods of finite-element solutions for semi-linear elliptic interface problems. Numer. Algorithm 84, 307–330 (2020)
Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)
Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35(2), 435–452 (1998)
Gong, Y., Li, B., Li, Z.: Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions. SIAM J. Numer. Anal. 46(1), 472–495 (2008)
Guo, R., Lin, T., Zhuang, Q.: Improved error estimation for the partially penalized immersed finite element methods for elliptic interface problems. Int. J. Numer. Anal. Model 16(4), 575–589 (2019)
Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Meth. Appl. Mech. Eng. 191(47–48), 5537–5552 (2002)
He, Y.: Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41(4), 1263–1285 (2004)
Huang, J., Zou, J.: A mortar element method for elliptic problems with discontinuous coefficients. IMA J. Numer. Anal. 22(4), 549–576 (2002)
Huang, P., Wu, H., Xiao, Y.: An unfitted interface penalty finite element method for elliptic interface problems. Comput. Meth. Appl. Mech. Eng. 323, 439–460 (2017)
Kwak, D.Y., Wee, K.T., Chang, K.S.: An analysis of broken \(p_1\)-nonconforming finite element method for interface problems. SIAM J. Numer. Anal. 48(6), 2117–2134 (2009)
Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2002)
Li, J., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60(1–2), 19–37 (2010)
LI, J., Zou, J.: Advances of finite element analysis for elliptic, parabolic and maxwell interface equations. Sci. China Math. 45(7), 1025–1040 (2015)
Li, Z., Ito, K.: The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains, vol. 33. SIAM (2006)
Li, Z., Lin, T., Lin, Y., Rogers, R.C.: An immersed finite element space and its approximation capability. Numer. Meth. Part. D. E. 20(3), 338–367 (2004)
Li, Z., Lin, T., Wu, X.: New cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003)
Lin, M., Lin, T., Zhang, H.: Error analysis of an immersed finite element method for Euler-Bernoulli beam interface problems. Int. J. Numer. Anal. Model. 14(6), 822–841 (2017)
Lin, T., Lin, Y., Sun, W.W., Wang, Z.: Immersed finite element methods for 4th order differential equations. J. Comput. Appl. Math. 235(13), 3953–3964 (2011)
Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53(2), 1121–1144 (2015)
Lin, T., Yang, Q., Zhang, X.: Partially penalized immersed finite element methods for parabolic interface problems. Numer. Meth. Part. D. E. 31(6), 1925–1947 (2015)
Lin, T., Zhang, X.: Linear and bilinear immersed finite elements for planar elasticity interface problems. J. Comput. Appl. Math. 236(18), 4681–4699 (2012)
Lin, T., Zhuang, Q.: Optimal error bounds for partially penalized immersed finite element methods for parabolic interface problems. J. Comput. Appl. Math. 366, 112401 (2020)
Mu, M., Xu, J.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45(5), 1801–1813 (2007)
Nicaise, S., Sändig, A.M.: General interface problems–i. Math. Meth. Appl. Sci. 17(6), 395–429 (1994)
Olshanskii, M.A., Reusken, A.: Analysis of a stokes interface problem. Numer. Math. 103(1), 129–149 (2006)
Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 85(1), 5–34 (1998)
Wang, H., Liang, D., Ewing, R.E., Lyons, S.L., Qin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian–Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22(2), 561–581 (2000)
Wang, Y., Chen, Y.: A two-grid method for incompressible miscible displacement problems by mixed finite element and Eulerian–Lagrangian localized adjoint methods. J. Math. Anal. Appl. 468(1), 406–422 (2018)
Wang, Y., Chen, Y., Huang, Y.: A two-grid Eulerian–Lagrangian localized adjoint method to miscible displacement problems with dispersion term. Comput. Math. Appl. 80, 54–68 (2020)
Wang, Y., Chen, Y., Huang, Y.: A two-grid method for semi-linear elliptic interface problems by partially penalized immersed finite element methods. Math. Comput. Simul. 169, 1–15 (2020)
Wang, Y., Chen, Y., Huang, Y., Liu, Y.: Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods. Appl. Math. Mech. (Engl. Ed.) 40(11), 1657–1676 (2019)
Wei, H., Chen, L., Huang, Y., Zheng, B.: Adaptive mesh refinement and superconvergence for two-dimensional interface problems. SIAM J. Sci. Comput. 36(4), A1478–A1499 (2014)
Wu, H., Xiao, Y.: An unfitted \(hp\)-interface penalty finite element method for elliptic interface problems. Eprint Arxiv 323,(2010)
Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15(1), 231–237 (1994)
Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33(5), 1759–1777 (1996)
Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. Am. Math. Soc. 69(231), 881–909 (2000)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is supported by National Natural Science Foundation of China (41974133, 11971410) and the State Key Program of National Natural Science Foundation of China (11931003) and Project for Hunan National Applied Mathematics Center of Hunan Provincial Science and Technology Department (2020ZYT003) and Postgraduate Scientific Research Innovation Project of Xiangtan University (XDCX2021B109)
Rights and permissions
About this article
Cite this article
Wang, Y., Chen, Y., Huang, Y. et al. A Family of Two-Grid Partially Penalized Immersed Finite Element Methods for Semi-linear Parabolic Interface Problems. J Sci Comput 88, 80 (2021). https://doi.org/10.1007/s10915-021-01575-z
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01575-z
Keywords
- Semi-linear interface problem
- Two-grid method
- Partially penalized
- Immersed finite element method
- Parabolic PDEs