A Robust High Order Alternative WENO Scheme for the Five-Equation Model | Journal of Scientific Computing Skip to main content
Log in

A Robust High Order Alternative WENO Scheme for the Five-Equation Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

High order methods play important roles in the modelling of compressible multi-component flows. However, they may generate negative sound speed, which leads to an instability of the numerical schemes. In this paper, we propose bound- and positivity-preserving limiters for high order finite difference schemes, based on which the equilibriums of the velocity and pressure are preserved throughout the whole computation of contact moving interface problems with the ideal and stiffened equations of state. For illustration purpose, high order alternative WENO scheme is taken for example. Numerical examples verify the theory and demonstrate the robustness of the proposed bound- and positivity-preserving limiters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181(2), 577–616 (2002)

    Article  MathSciNet  Google Scholar 

  2. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  3. Cheng, J., Shu, C.-W.: Positivity-preserving Lagrangian scheme for multi-material compressible flow. J. Comput. Phys. 257, 143–168 (2014)

    Article  MathSciNet  Google Scholar 

  4. Cheng, J., Zhang, F., Liu, T.: A quasi-conservative discontinuous Galerkin method for solving five equation model of compressible two-medium flows. J. Scientif. Comput. 85, 586 (2020)

    Article  MathSciNet  Google Scholar 

  5. Coralic, V., Colonius, T.: Finite-volume WENO scheme for viscous compressible multicomponent flows. J. Comput. Phys. 274, 95–121 (2014)

    Article  MathSciNet  Google Scholar 

  6. Deng, X., Inaba, S., Xie, B., Shyue, K.-M., Xiao, F.: High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces. J. Comput. Phys. 371, 945–966 (2018)

    Article  MathSciNet  Google Scholar 

  7. Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013)

    Article  MathSciNet  Google Scholar 

  8. Don, W.S., Li, D., Gao, Z., Wang, B.: A characteristic-wise alternative WENO-Z finite difference scheme for solving the compressible multicomponent non-reactive flows in the overestimated quasi-conservative form. J. Scientif. Comput. 82, 584 (2020)

    Article  MathSciNet  Google Scholar 

  9. Y. Gu, Z. Gao, G. Hu, P. Li, and L. Wang. High order finite difference alternative WENO scheme for multi-component flows, 2020. submitted

  10. Guo, Y., Xiong, T., Shi, Y.: A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations. J. Comput. Phys. 274, 505–523 (2014)

    Article  MathSciNet  Google Scholar 

  11. He, Z., Li, L., Zhang, Y., Tian, B.: Consistent implementation of characteristic flux-split based finite difference method for compressible multi-material gas flows. Computers & Fluids 168, 190–200 (2018)

    Article  MathSciNet  Google Scholar 

  12. Hu, X.Y., Adams, N.A., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)

    Article  MathSciNet  Google Scholar 

  13. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  14. Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws. SIAM J. Scientif. Comput. 35(2), A1137–A1160 (2013)

    Article  MathSciNet  Google Scholar 

  15. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problem. J. Comput. Phys. 219(2), 715–732 (2006)

    Article  MathSciNet  Google Scholar 

  16. Li, P., Don, W.S., Wang, C., Gao, Z.: High order positivity- and bound-preserving hybrid compact-WENO finite difference scheme for the compressible Euler equations. J. Scientif. Comput. 74(2), 640–660 (2018)

    Article  MathSciNet  Google Scholar 

  17. D. Luo, S. Li, W. Huang, J. Qiu, and Y. Chen. A quasi-conservative DG-ALE method for multi-component flows using the non-oscillatory kinetic flux, 2021. submitted

  18. D. Luo, J. Qiu, J. Zhu, and Y. Chen. A quasi-conservative discontinuous Galerkin method for multi-component flows using the non-oscillatory kinetic flux, 2020. submitted

  19. Movahed, P., Johnsen, E.: A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability. J. Comput. Phys. 239, 166–186 (2013)

    Article  MathSciNet  Google Scholar 

  20. Nourgaliev, R.R., Dinh, N.T., Theofanous, T.G.: Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213(2), 500–529 (2006)

    Article  Google Scholar 

  21. Saurel, R., Abgrall, R.: A simple method for compressible multifluid flows. SIAM J. Scientif. Comput. 21(3), 1115–1145 (1999)

    Article  MathSciNet  Google Scholar 

  22. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  23. Shukla, R.K., Pantano, C., Freund, J.B.: An interface capturing method for the simulation of multi-phase compressible flows. J. Comput. Phys. 229(19), 7411–7439 (2010)

    Article  MathSciNet  Google Scholar 

  24. Shyue, K.-M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142(1), 208–242 (1998)

    Article  MathSciNet  Google Scholar 

  25. Tian, B., Li, L.: A five-equation model based global ale method for compressible multifluid and multiphase flows. Computers & Fluids 214, 289 (2021)

    Article  MathSciNet  Google Scholar 

  26. Vilar, F., Shu, C.-W., Maire, P.-H.: Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. part I: The one-dimensional case. J. Comput. Phys. 312, 385–415 (2016)

    Article  MathSciNet  Google Scholar 

  27. Vilar, F., Shu, C.-W., Maire, P.-H.: Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. part II: The two-dimensional case. J. Comput. Phys. 312, 416–442 (2016)

    Article  MathSciNet  Google Scholar 

  28. Wang, B.-S., Li, P., Gao, Z., Don, W.S.: An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws. J. Comput. Phys. 374, 469–477 (2018)

    Article  MathSciNet  Google Scholar 

  29. Xu, L., Liu, T.: Explicit interface treatments for compressible gas-liquid simulations. Computers & Fluids 153, 34–48 (2017)

    Article  MathSciNet  Google Scholar 

  30. Zhang, C., Menshov, I.: Using the composite Riemann problem solution for capturing interfaces in compressible two-phase flows. Appl. Math. Comput. 363, 3546 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)

    Article  MathSciNet  Google Scholar 

  32. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. A - Math., Phys. Eng. Sci. 467, 2752–2776 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230(4), 1238–1248 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research of Yaguang Gu and Zhen Gao is partially supported by the NNSFC (11871443) and Shandong Provincial Qingchuang Science and Technology Project (2019KJI002). The research of Guanghui Hu is partially supported by NNSFC (11922120) and Multi-Year Research Grant (2019-00154-FST) of University of Macau. The research of Peng Li is partially supported by the NNSFC (11801383) and Hebei Provincial NSF (A2020210047). The research of Lifeng Wang is partially supported by the NNSFC (11975053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Gao.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Code Availability

The custom codes generated during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Gao, Z., Hu, G. et al. A Robust High Order Alternative WENO Scheme for the Five-Equation Model. J Sci Comput 88, 12 (2021). https://doi.org/10.1007/s10915-021-01529-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01529-5

Keywords

Navigation