An Essentially Non-oscillatory Crank–Nicolson Procedure for the Simulation of Convection-Dominated Flows | Journal of Scientific Computing
Skip to main content

An Essentially Non-oscillatory Crank–Nicolson Procedure for the Simulation of Convection-Dominated Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The Crank–Nicolson (CN) time-stepping procedure incorporating the second-order central spatial scheme is unconditionally stable and strictly non-dissipative for linear convection flows; however, its numerical solution in practice can be oscillatory for nonsmooth solutions. This article studies variants of the CN method for the simulation of linear convection-dominated diffusion flows, in which the explicit convection part is approximated by an upwind scheme, to effectively suppress nonphysical oscillations. The second-order essentially non-oscillatory scheme incorporated in the CN procedure (ENO-CN) has been found effective for a non-oscillatory numerical solution of minimum numerical dissipation. A stability analysis is provided for ENO-CN, which turns out to be unconditionally stable for problems of nonzero diffusion. However, for purely convective flows, it is stable only when the CFL condition is satisfied. Numerical results are presented to demonstrate its stability and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Celia, M.A., Russell, T.F., Herrera, I., Ewing, R.E.: An Eulerian–Lagrangian localized adjoint method for the advection–diffusion equation. Adv. Water Resour. 13(4), 187–206 (1990)

    Article  Google Scholar 

  2. Cho, C.K., Kim, S.: An essentially non-oscillatory Crank–Nicolson procedure for incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 56(8), 1351–1357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coppa, G., Lapenta, G., Dellapiana, G., Donato, F., Riccardo, V.: Blob method for kinetic plasma simulation with variable-size particles. J. Comput. Phys. 127(2), 268–284 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Douglas, J.: Alternating direction methods for three space variables. Numer. Math. 4(1), 41–63 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  5. Douglas, J., Peaceman, D.: Numerical solution of two-dimensional heat-flow problems. AIChE J. 1(4), 505–512 (1955)

    Article  Google Scholar 

  6. Douglas Jr., J.: On the numerical integration of \(\partial ^2u/\partial x^2+\partial ^2u/\partial y^2=\partial u/\partial t\) by implicit methods. J. Soc. Ind. Appl. Math. 3, 42–65 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  7. Douglas Jr, J.: Alternating-direction iteration for the p-version of the finite element method. Partial Differen. Equ. Appli. Collect. Pap. Honor Carlo Pucci 121 (1996)

  8. Douglas Jr., J., Kim, S.: Improved accuracy for locally one-dimensional methods for parabolic equations. Math. Models Methods Appl. Sci. 11(09), 1563–1579 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, New York (2012)

    MATH  Google Scholar 

  10. Freund, R.W.: Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J. Sci. Stat. Comput. 13(1), 425–448 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gunn, J., et al.: A general formulation of alternating direction methods. Part i. Parabolic and hyperbolic problems. Numer. Math. 6, 428–453 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harlow, F.H.: The particle-in-cell computing method for fluid dynamics. Methods Comput. Phys. 3(3), 319–343 (1964)

    Google Scholar 

  13. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. CRC Press, Boca Raton (1988)

    Book  MATH  Google Scholar 

  14. Hu, C., Shu, C.W.: A discontinuous galerkin finite element method for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(2), 666–690 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hughes, T.J., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. Finite Elem Methods Convect. Domin. Flows 34, 19–35 (1979)

    MathSciNet  MATH  Google Scholar 

  16. Hughes, T.J., Franca, L., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible euler and Navier–Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54(2), 223–234 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hughes, T.J., Mallet, M.: A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective–diffusive systems. Comput. Methods Appl. Mech. Eng. 58(3), 329–336 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jarzbski, A.B., Thullie, J.W.: A stable highly accurate adi method for hyperbolic heat conduction equation. J. Comput. Phys. 63(1), 236–239 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, G.S., Peng, D.: Weighted eno schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46(173), 1–26 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kang, M., Fedkiw, R.P., Liu, X.D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15(3), 323–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kurganov, A., Tadmor, E.: New high-resolution semi-discrete central schemes for Hamilton–Jacobi equations. J. Comput. Phys. 160(2), 720–742 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kwak, D.Y.: A norm estimate for the adi method for nonsymmetric problems. Linear Algebra Appl. 266, 127–141 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kwatra, N., Su, J., Grétarsson, J.T., Fedkiw, R.: A method for avoiding the acoustic time step restriction in compressible flow. J. Comput. Phys. 228(11), 4146–4161 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee, B., Kang, M.: Full 3d simulations of two-phase core-annular flow in horizontal pipe using level set method. J. Sci. Comput. 66(3), 1025–1051 (2016)

    Article  MathSciNet  Google Scholar 

  27. Leonard, B.P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19(1), 59–98 (1979)

    Article  MATH  Google Scholar 

  28. Lesaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. Math. Asp. Finite Elem. Partial Differ. Equ. 33, 89–123 (1974)

    Article  MathSciNet  Google Scholar 

  29. LeVeque, R.J.: Numerical Methods for Conservation Laws, vol. 132. Springer, New York (1992)

    Book  MATH  Google Scholar 

  30. Levy, D., Tadmor, E.: Non-oscillatory central schemes for the incompressible 2-d Euler equations. Math. Res. Lett. 4, 321–340 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Madden, N., Stynes, M.: Linear enhancements of the streamline diffusion method for convection–diffusion problems. Comput. Math. Appl. 32(10), 29–42 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Osher, S., Shu, C.W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Peaceman, D.W., Rachford Jr., H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  35. Saad, Y., Schultz, M.H.: Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shih, Y.T., Elman, H.C.: Modified streamline diffusion schemes for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 174(1), 137–151 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shu, C.W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19(1), 439–456 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Smit, J., van Sint Annaland, M., Kuipers, J.: Grid adaptation with weno schemes for non-uniform grids to solve convection-dominated partial differential equations. Chem. Eng. Sci. 60(10), 2609–2619 (2005)

    Article  Google Scholar 

  40. Staniforth, A., Côté, J.: Semi-lagrangian integration schemes for atmospheric models—a review. Mon. Weather Rev. 119(9), 2206–2223 (1991)

    Article  Google Scholar 

  41. Stone, H.L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal. 5(3), 530–558 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  42. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. Siam, Philadelphia (2004)

    Book  MATH  Google Scholar 

  43. Van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)

    Article  MATH  Google Scholar 

  44. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  45. Wang, H., Ewing, R.E., Qin, G., Lyons, S.L., Al-Lawatia, M., Man, S.: A family of Eulerian–Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations. J. Comput. Phys. 152(1), 120–163 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Warburton, T., Karniadakis, G.: A discontinuous galerkin method for the viscous mhd equations. J. Comput. Phys. 152(2), 608–641 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu, J.J., Zhao, H.K.: An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19(1–3), 573–594 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Myungjoo Kang is supported by Basic Sciences Research Program through the NRF of Korea funded by the Ministry of Science, ICT and Future Planning (2014R1A2A1A10050531 and 2015R1A5A1009350) and MOTIE (10048720) and IITP-MSIP(No. B0717-16-0107). Seongjai Kim’s work is partially supported by NSF grant DMS-1228337.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Lee.

Appendix: The Strongly Implicit Procedure (SIP)

Appendix: The Strongly Implicit Procedure (SIP)

The problem (15) in the time level n can be written as the following algebraic system of the form

$$\begin{aligned} A\mathbf{u}=\mathbf{b}, \end{aligned}$$
(41)

where the superscript n is omitted for a simpler presentation. To solve it, we adopt the strongly implicit procedure (SIP) suggested by Stone [41]. For completeness of the paper, we briefly describe the basic idea of SIP.

As for other iterative methods, SIP is based on a regular splitting, \(A=M-N,\) with M being an incomplete LU (ILU) factorization;

$$\begin{aligned} M=L_IU_I=A+N, \end{aligned}$$
(42)

where \(L_I\) and \(U_I\) are respectively the lower and upper triangular components of an ILU factorization of A, where the entries of the main diagonal of \(U_I\) are all one. Note that the iteration corresponding to the splitting (42) is formulated as

$$\begin{aligned} L_IU_I\mathbf{u}^k=N\mathbf{u}^{k-1}+\mathbf{b}, \end{aligned}$$
(43)

or, equivalently,

$$\begin{aligned} \begin{array}{ll} \hbox {(a)} &{}\displaystyle \mathbf{r}^{k-1}=\mathbf{b}-A\mathbf{u}^{k-1}, \\ \hbox {(b)} &{}\displaystyle L_IU_I\varvec{\delta }^{k-1}=\mathbf{r}^{k-1}, \\ \hbox {(c)} &{}\displaystyle \mathbf{u}^k=\mathbf{u}^{k-1}+\varvec{\delta }^{k-1}, \end{array} \end{aligned}$$
(44)

where ILU-factorization is carried out by Stone’s SIP [41] .

To make the iteration (43) converge fast, we will choose elements of \(L_I\) and \(U_I\) in a way that N is as small as possible. Let us begin with a 2D problem in a rectangular mesh, where the grid points are ordered in the row-wise manner and the five-point FD scheme is applied. Then, the ILU factorization is in the form shown in Fig. 7 and the row of M corresponding to the \((\ell ,m)\)-th grid point is

$$\begin{aligned} \begin{array}{lcl} M_{S}^{\ell ,m} &{}=&{} L_{S}^{\ell ,m}, \\ M_{SE}^{\ell ,m} &{}=&{} L_{S}^{\ell ,m}U_{E}^{\ell ,m-1}, \\ M_{W}^{\ell ,m} &{}=&{} L_{W}^{\ell ,m}, \\ M_{C}^{\ell ,m} &{}=&{} L_{S}^{\ell ,m}U_{N}^{\ell ,m-1} +L_{W}^{\ell ,m}U_{E}^{\ell -1,m}+L_{C}^{\ell ,m}, \\ M_{E}^{\ell ,m} &{}=&{} L_{C}^{\ell ,m}U_{E}^{\ell ,m}, \\ M_{NW}^{\ell ,m} &{}=&{} L_{W}^{\ell ,m}U_{N}^{\ell -1,m}, \\ M_{N}^{\ell ,m} &{}=&{} L_{C}^{\ell ,m}U_{N}^{\ell ,m}. \end{array} \end{aligned}$$
(45)

Here the subscripts S, W, E, N, and C denote respectively south, west, east, north, and center; which show the relationship of the center point to the adjacent grid points.

Fig. 7
figure 7

Systematic presentation of \(L_IU_I=M\). The subscripts S, W, E, N, and C denote respectively south, west, east, north, and center. Note that diagonals of M marked by subscripts SE and NW are not found in A

The \((\ell ,m)\)-th component of \(N\mathbf{x}\) is

$$\begin{aligned} \begin{array}{lcl} (N\mathbf{x})_{\ell ,m} &{}=&{} N_C^{\ell ,m}x_{\ell ,m} +N_S^{\ell ,m}x_{\ell ,m-1} +N_W^{\ell ,m}x_{\ell -1,m} +N_E^{\ell ,m}x_{\ell +1,m} \\ &{} &{} +N_N^{\ell ,m}x_{\ell ,m+1} +M_{SE}^{\ell ,m}x_{\ell +1,m-1} +M_{NW}^{\ell ,m}x_{\ell -1,m+1}. \end{array} \end{aligned}$$
(46)

By utilizing the approximations

$$\begin{aligned} \begin{array}{lcl} x_{\ell +1,m-1}&{}\approx &{}\alpha \left( x_{\ell ,m-1}+x_{\ell +1,m}-x_{\ell ,m}\right) , \\ x_{\ell -1,m+1}&{}\approx &{}\alpha \left( x_{\ell ,m+1}+x_{\ell -1,m}-x_{\ell ,m}\right) , \end{array} \quad 0<\alpha \le 1, \end{aligned}$$
(47)

we can rewrite (46) as

$$\begin{aligned} \begin{array}{lcl} (N\mathbf{x})_{\ell ,m} &{}\approx &{} \left( N_C^{\ell ,m}-\alpha M_{SE}^{\ell ,m} -\alpha M_{NW}^{\ell ,m}\right) x_{\ell ,m} \\ &{} &{} +\left( N_S^{\ell ,m}+\alpha M_{SE}^{\ell ,m}\right) x_{\ell ,m-1} +(N_W^{\ell ,m}+\alpha M_{NW}^{\ell ,m}) x_{\ell -1,m} \\ &{} &{} +\left( N_E^{\ell ,m}+\alpha M_{SE}^{\ell ,m}\right) x_{\ell +1,m} +(N_N^{\ell ,m}+\alpha M_{NW}^{\ell ,m}) x_{\ell ,m+1}. \end{array} \end{aligned}$$
(48)

Set each of coefficients in the right-side of (48) to be zero. Then, it follows from (45) that entries of N are presented by those of \(L_I\) and \(U_I\):

$$\begin{aligned} \begin{array}{l} N_S^{\ell ,m}= -\alpha M_{SE}^{\ell ,m} =-\alpha L_{S}^{\ell ,m}U_{E}^{\ell ,m-1}, \\ N_W^{\ell ,m}= -\alpha M_{NW}^{\ell ,m} =-\alpha L_{W}^{\ell ,m}U_{N}^{\ell -1,m}, \\ N_C^{\ell ,m}= \alpha \left( M_{SE}^{\ell ,m}+M_{NW}^{\ell ,m}\right) =\alpha \left( L_{S}^{\ell ,m}U_{E}^{\ell ,m-1} +L_{W}^{\ell ,m}U_{N}^{\ell -1,m}\right) , \\ N_E^{\ell ,m}= -\alpha M_{SE}^{\ell ,m} =-\alpha L_{S}^{\ell ,m}U_{E}^{\ell ,m-1}, \\ N_N^{\ell ,m}= -\alpha M_{NW}^{\ell ,m} =-\alpha L_{W}^{\ell ,m}U_{N}^{\ell -1,m}. \end{array} \end{aligned}$$
(49)

Now, utilizing \(M=A+N\), (45), and (49), one can obtain Stone’s ILU factorization [41]:

$$\begin{aligned} \begin{array}{lcl} L_{S}^{\ell ,m} &{}=&{} A_S^{\ell ,m}/\left( 1+\alpha U_E^{\ell ,m-1}\right) , \\ L_{W}^{\ell ,m} &{}=&{} A_W^{\ell ,m}/\left( 1+\alpha U_N^{\ell -1,m}\right) , \\ L_{C}^{\ell ,m} &{}=&{} A_C^{\ell ,m}+\alpha (L_{S}^{\ell ,m}U_{E}^{\ell ,m-1} +L_{W}^{\ell ,m}U_{N}^{\ell -1,m}) \\ &{} &{} -L_{S}^{\ell ,m}U_{N}^{\ell ,m-1} -L_{W}^{\ell ,m}U_{E}^{\ell -1,m}, \\ U_{E}^{\ell ,m} &{}=&{} \left( A_E^{\ell ,m}-\alpha L_{S}^{\ell ,m}U_{E}^{\ell ,m-1}\right) / L_C^{\ell ,m}, \\ U_{N}^{\ell ,m} &{}=&{} \left( A_N^{\ell ,m}-\alpha L_{W}^{\ell ,m}U_{N}^{\ell -1,m}\right) / L_C^{\ell ,m}. \end{array} \end{aligned}$$
(50)

The SIP (50) deserves the following remarks:

  • The approximations in (47) are second-order accurate when \(\alpha =1\). But in the case, the algorithm (43) incorporating (50) can be unstable; the parameter \(\alpha \) has been chosen between 0.92 and 0.96 for various applications in computational fluid dynamics [9]. Entries of \(L_I\) and \(U_I\) used in (50) whose indices are outside the index boundaries should be set zero.

  • The basic idea of SIP shown for the five-point FD scheme can be applied to nine-point FD schemes, their 3D extensions, and other discretization methods such as finite volume and finite element methods, with minor modifications; although the derivation is so tedious.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B., Kang, M. & Kim, S. An Essentially Non-oscillatory Crank–Nicolson Procedure for the Simulation of Convection-Dominated Flows. J Sci Comput 71, 875–895 (2017). https://doi.org/10.1007/s10915-016-0324-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0324-4

Keywords