Local Discontinuous Galerkin Method for Incompressible Miscible Displacement Problem in Porous Media | Journal of Scientific Computing Skip to main content
Log in

Local Discontinuous Galerkin Method for Incompressible Miscible Displacement Problem in Porous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we develop local discontinuous Galerkin method for the two-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in \(L^{\infty }(0, T; L^{2})\) for concentration c, \(L^{2}(0, T; L^{2})\) for \(\nabla c\) and \(L^{\infty }(0, T; L^{2})\) for velocity \(\mathbf{u}\) are derived. The main techniques in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method, the nonlinearity, and the coupling of the models. The main difficulty is how to treat the inter-element discontinuities of two independent solution variables (one from the flow equation and the other from the transport equation) at cell interfaces. Numerical experiments are shown to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amaziane, B., Ossmani, M.: Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods. Numer. Methods Partial Differ. Equ. 24, 799–832 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartels, S., Jensen, M., Müller, R.: Discontinuous Galerkin finite element convergence for incompressible miscible displacement problem of low regularity. SIAM J. Numer. Anal. 47, 3720–3743 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bear, J.: Dynamics of fluids in porous media, p. 764. Dover Publications Inc, New York (1972)

    MATH  Google Scholar 

  5. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chainais-Hillairet, C., Krell, S., Mouton, A.: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numer. Methods Partial Differ. Equ. 31, 723–760 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet, P.: The Finite Element Method for Elliptic Problem. North-Holland publishing company, North Holland (1975)

  8. Cockburn, B.: An introduction to the Discontinuous Galerkin method for convection-dominated problems, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, vol. 1697 of the series. Lecture Notes in Mathematics, pp 150–268 (2006)

  9. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui, M.: Analysis of a semidiscrete discontinuous Galerkin scheme for compressible miscible displacement problem. J. Comput. Appl. Math. 214, 617–636 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, R.A.I.R.O. Anal. Numér 17, 249–256 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O. Anal. Numér 17, 17–33 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dullien, F.: Porous Media Fluid Transport and Pore Structure. Academic Press Inc, New York (1979)

    Google Scholar 

  14. Ewing, R.E., Russell, T.F.: Efficient time-stepping methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 19, 1–67 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47, 73–92 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, X., Recent developments on modeling and analysis of flow of miscible fluids in porous media. In: Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment (South Hadley, MA, 2001), Contemp. Math. 295. AMS, Providence, RI, 2002, pp 219–240

  18. Gelfand, I.M.: Some questions of analysis and differential equations. Am. Math. Soc. Trans. 26, 201–219 (1963)

    MathSciNet  Google Scholar 

  19. Guo, H., Zhang, Q., Yang, Y.: A combined mixed finite element method and local discontinuous Galerkin method for miscible displacement problem in porous media. Sci. China Math. 57, 2301–2320 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hurd, A.E., Sattinger, D.H.: Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients. Trans. Am. Math. Soc. 132, 159–174 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jaffre, J., Roberts, J.E.: Upstream weighting and mixed finite elements in the simulation of miscible displacements. ESAIM. Math. Modell. Numer. Anal. 19, 443–460 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kumar, S.: A mixed and discontinuous Galerkin finite volume element method for incompressible miscible displacement problems in porous media. Numer. Methods Partial Differ. Equ. 28, 1354–1381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, X., Rui, H.: A MCC finite element approximation of incompressible miscible displacement in porous media. Comput. Math. Appl. 70, 750–764 (2015)

    Article  MathSciNet  Google Scholar 

  24. Rivière, B.: Discontinuous Galerkin finite element methods for solving the miscible displacement problem in porous media, Ph.D. Thesis, The University of Texas at Austin (2000)

  25. Russell, T.F., Wheeler, M.F.: Finite element and finite difference methods for continuous flows in porous media. In: Ewing, R.E. (ed.) The Mathematics of Reservoir Simulation, Frontiers Applied Mathematics 1, pp. 35–106. SIAM, Philadelphia (1983)

    Chapter  Google Scholar 

  26. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, S., Rivière, B., Wheeler, M.F.: A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media, Recent Progress. In: Tony C. et al. (Eds.) Computational and Applied PDEs, Kluwer, Plenum Press, Dordrecht, New York, pp 323–351 (2002)

  28. Sun, S., Wheeler, M.F.: Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl. Numer. Math. 52, 273–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, H., Liang, D., Ewing, R.E., Lyons, S.L., Qin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian–Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22, 561–581 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, H., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)

    MathSciNet  Google Scholar 

  32. Wang, H., Wang, S., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit-explicit time marching for multi-dimensional convectiondiffusion problems. ESAIM: M2AN 50, 1083–1105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wei, Y.: Stabilized finite element methods for miscible displacement in porous media. ESAIM. Math. Modell. Numer. Anal. 28, 611–665 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wheeler, M.F., Darlow, B.L.: Interiori penalty Galerkin methods for miscible displacement problems in porous media. Computational Methods in Nonlinear Mechanics, North-Holland, Amsterdam, pp. 458–506 (1980)

  35. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Kuramoto–Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Eng. 195, 3430–3447 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, D.: Mixed methods with dynamic finite-element spaces for miscible displacement in porous media. J. Comput. Appl. Math. 30, 313–328 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. J. Comput. Math. 33, 323–340 (2015)

    Article  MathSciNet  Google Scholar 

  40. Yuan, Y.: Characteristic finite element methods for positive semidefinite problem of two phase miscible flow in three dimensions. Chin. Sci. Bull. 22, 2027–2032 (1996)

    Google Scholar 

  41. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates to the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (11571367) and the Fundamental Research Funds for the Central Universities. The author would like to express sincere thanks to the referees for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Yu, F. & Yang, Y. Local Discontinuous Galerkin Method for Incompressible Miscible Displacement Problem in Porous Media. J Sci Comput 71, 615–633 (2017). https://doi.org/10.1007/s10915-016-0313-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0313-7

Keywords

Mathematics Subject Classification

Navigation