Abstract
Polynomial preserving recovery (PPR) was first proposed and analyzed in Zhang and Naga in SIAM J Sci Comput 26(4):1192–1213, (2005), with intensive following applications on elliptic problems. In this paper, we generalize the study of PPR to high-frequency wave propagation. Specifically, we establish the supercloseness between finite element solution and its interpolation with explicit dependence on the frequency of wavefield, and then prove the superconvergence of PPR for high-frequency solutions to wave equation based on the supercloseness. We also present several numerical examples of PPR for both low-frequency and high-frequency wave propagation in order to confirm the theoretical results of superconvergence analysis.
Similar content being viewed by others
References
Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)
Babuška, I., Strouboulis, T., Upadhyay, C.S., Gangaraj, S.K., Copps, K.: Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Methods Eng. 37(7), 1073–1123 (1994)
Baccouch, M.: A superconvergent local discontinuous Galerkin method for the second-order wave equation on Cartesian grids. Comput. Math. Appl. 68(10), 1250–1278 (2014)
Baker, G.A.: Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13(4), 564–576 (1976)
Bank, R., Xu, J.: Asymptotically exact a posteriori error estimators. I. Grids with superconvergence. SIAM J. Numer. Anal. 41(6), 2294–2312 (2003). (Electronic)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, 3rd edn. In: Texts in Applied Mathematics, vol. 15. Springer, New York (2008)
Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM. Math. Comput. 71(239), 945–969 (2002). (Electronic)
Chen, C., Hu, S.: The highest order superconvergence for bi-k degree rectangular elements at nodes: a proof of 2k-conjecture. Math. Comput. 82(283), 1337–1355 (2013)
Chen, L., Xu, J.: A posteriori error estimator by post-processing. In: Tang, T., Xu, J. (eds.) Adaptive Computations: Theory and Algorithms. Science Press, Beijing (2006)
Chou, C.-S., Shu, C.-W., Xing, Y.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Cockburn, B., Quenneville-Bélair, V.: Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation. Math. Comput. 83(285), 65–85 (2014)
Douglas, J. Jr., Dupont, T.: Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems. In: Topics in Numerical Analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972), pp. 89–92. Academic Press, London (1973)
Douglas, J., Dupont, T.: Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces. Numer. Math. 22, 99–109 (1974)
Dougalis, V.A., Serbin, S.M.: On the superconvergence of Galerkin approximations to second-order hyperbolic equations. SIAM J. Numer. Anal. 17(3), 431–446 (1980)
Dupont, T.: \(L^2\)-estimates for Galerkin methods for second order hyperbolic equations. SIAM J. Numer. Anal. 10, 880–889 (1973)
Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)
Formaggia, L., Perotto, S.: New anisotropic a priori error estimates. Numer. Math. 89(4), 641–667 (2001)
Formaggia, L., Perotto, S.: Anisotropic error estimates for elliptic problems. Numer. Math. 94(1), 67–92 (2003)
Guo, H., Zhang, Z.: Gradient recovery for the Crouzeix–Raviart element. J. Sci. Comput. 64(2), 456–476 (2015)
Guo, H., Zhang, Z., Zhao, R.: Superconvergent Two-grid Methods For Elliptic Eigenvalue Problems, J Sci Comput, 1–24 , (2016). doi:10.1007/s10915-016-0245-2
Huang, W., Russell, R.: Adaptive Moving Mesh Methods, Applied Mathematical Sciences, 174. Springer, New York (2011)
Huang, Y., Xu, J.: Superconvergence of quadratic finite elements on mildly structured grids. Math. Comput. 77(263), 1253–1268 (2008)
Huang, Z.Y., Yang, X.: Tailored finite point method for first order wave equation. J. Sci. Comput. 49(3), 351–366 (2011)
Lakhany, A.M., Marek, I., Whiteman, J.R.: Superconvergence results on mildly structured triangulations. Comput. Methods Appl. Mech. Eng. 189(1), 1–75 (2000)
Ihlenburg, F., Babus̆ka, I.: Finite element solution of the Helmholtz equation with high wave number. I. The h-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)
Ihlenburg, F., Babus̆ka, I.: Finite element solution of the Helmholtz equation with high wave number. II. The h-p version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)
Lin, Q., Wang, H., Lin, T.: Interpolated finite element methods for second order hyperbolic equations and their global superconvergence. Syst. Sci. Math. Sci. 6(4), 331–340 (1993)
Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)
Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 42(4), 1780–1800 (2004). (Electronic)
Naga, A., Zhang, Z.: The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete Contin. Dyn. Syst. Ser. B 5(3), 769–798 (2005)
Naga, A., Zhang, Z., Zhou, A.: Enhancing eigenvalue approximation by gradient recovery. SIAM J. Sci. Comput. 28(4), 1289–1300 (2006). (Electronic)
B. Niceno, EasyMesh Version 1.4: A Two-Dimensional Quality Mesh Generator, http://www-dinma.univ.trieste.it/nirftc/research/easymesh
Shi, D., Li, Z.: Superconvergence analysis of the finite element method for nonlinear hyperbolic equations with nonlinear boundary condition. Appl. Math. J. Chin. Univ. Ser. B 23(4), 455–462 (2008)
Sjögreen, B., Petersson, N.A.: A fourth order accurate finite difference scheme for the elastic wave equation in second order formulation. J. Sci. Comput. 52(1), 17–48 (2012)
Wahlbin, L.: Superconvergence in Galerkin finite element methods. Lecture Notes in Mathematics, vol. 1605. Springer, Berlin (1995)
Wang, F., Chen, Y., Tang, Y.: Superconvergence of fully discrete splitting positive definite mixed FEM for hyperbolic equations. Numer. Methods Partial Differ. Equ. 30(1), 175–186 (2014)
Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version. IMA J. Numer. Anal. 34(3), 1266–1288 (2014)
Wu, H., Zhang, Z.: Can we have superconvergent gradient recovery under adaptive meshes? SIAM J. Numer. Anal. 45(4), 1701–1722 (2007)
Wu, H., Zhang, Z.: Enhancing eigenvalue approximation by gradient recovery on adaptive meshes. IMA J. Numer. Anal. 29(4), 1008–1022 (2009)
Xing, Y., Chou, C.-S., Shu, C.-W.: Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Probl. Imaging 7(3), 967–986 (2013)
Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73(247), 1139–1152 (2004). (Electronic)
Lu, J., Yang, X.: Frozen Gaussian approximation for high frequency wave propagation. Commun. Math. Sci. 9(3), 663–683 (2011)
Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26(4), 1192–1213 (2005). (Electronic)
Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)
Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique. Int. J. Numer. Methods Eng. 33, 1331–1364 (1992)
Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity. Int. J. Numer. Methods Eng. 33, 1331–1364 (1992)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by the NSF Grants DMS-1418936 and DMS-1107291, and Hellman Family Foundation Faculty Fellowship, UC Santa Barbara. We also acknowledge support from the Center for Scientific Computing from the CNSI, MRL: an NSF MRSEC (DMR-1121053) and NSF CNS-0960316.
Rights and permissions
About this article
Cite this article
Guo, H., Yang, X. Polynomial Preserving Recovery for High Frequency Wave Propagation. J Sci Comput 71, 594–614 (2017). https://doi.org/10.1007/s10915-016-0312-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-016-0312-8
Keywords
- Wave equation
- High-frequency
- Polynomial preserving
- Gradient recovery
- Superconvergence
- Finite element method