Recent Developments in the Pure Streamfunction Formulation of the Navier-Stokes System | Journal of Scientific Computing Skip to main content
Log in

Recent Developments in the Pure Streamfunction Formulation of the Navier-Stokes System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we review fourth-order approximations of the biharmonic operator in one, two and three dimensions. In addition, we describe recent developments on second and fourth order finite difference approximations of the two dimensional Navier-Stokes equations. The schemes are compact both for the biharmonic and the Laplacian operators. For the convective term the fourth order scheme invokes also a sixth order Pade approximation for the first order derivatives, using an approximation suggested by Carpenter-Gottlieb-Abarbanel (J. Comput. Phys. 108:272–295, 1993). We also introduce the derivation of a pure streamfunction formulation for the Navier-Stokes equations in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Artzi, M.: Planar Navier-Stokes equations, vorticity approach. In: Fridlander, S.J., Serre, J. (eds.) Handbook of Mathematical Fluid Dynamics, vol. II. Elsevier, Amsterdam (2003). Chapter 5

    Google Scholar 

  2. Ben-Artzi, M., Croisille, J.-P., Fishelov, D., Trachtenberg, S.: A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations. J. Comput. Phys. 205(2), 640–664 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben-Artzi, M., Croisille, J.-P., Fishelov, D.: Convergence of a compact scheme for the pure streamfunction formulation of the unsteady Navier-Stokes system. SIAM J. Numer. Anal. 44(5), 1997–2024 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ben-Artzi, M., Croisille, J.-P., Fishelov, D.: A fast direct solver for the biharmonic problem in a rectangular grid. SIAM J. Sci. Comput. 31(1), 303–333 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Artzi, M., Chorev, I., Croisille, J.-P., Fishelov, D.: A compact difference scheme for the biharmonic equation in planar irregular domains. SIAM J. Numer. Anal. 47(4), 3087–3108 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben-Artzi, M., Croisille, J.-P., Fishelov, D.: A high order compact scheme for the pure-streamfunction formulation of the Navier-Stokes Equations. J. Sci. Comput. 42(2), 216–250 (2010)

    Article  MathSciNet  Google Scholar 

  7. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: The stability of numerical boundary treatments for compact high-order schemes finite difference schemes. J. Comput. Phys. 108, 272–295 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. E, W., Liu, J.-G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122–138 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  10. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon, Elmsford (1959). Chapter II, Sect. 15

    Google Scholar 

  11. Ruas, V., Quartapelle, L.: Uncouples finite element solutions of biharmonic problems for vector potentials. Int. J. Numer. Methods Fluids 11, 811–822 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rubel, A., Volpe, G.: Biharmonic vector stream function formulation and multigrid solutions for a three-dimensional driven-cavity stokes flow. In: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, 13–15 June 1989, pp. 380–388. AIAA, Washington (1989)

    Google Scholar 

  13. Stephenson, J.W.: Single cell discretizations of order two and four for biharmonic problems. J. Comput. Phys. 55, 65–80 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Fishelov.

Additional information

Dedicated to the memory of Professor David Gottlieb for his Wisdom and Generosity.

Partially supported by a French-Israeli scientific cooperation grant 3-1355.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fishelov, D., Ben-Artzi, M. & Croisille, JP. Recent Developments in the Pure Streamfunction Formulation of the Navier-Stokes System. J Sci Comput 45, 238–258 (2010). https://doi.org/10.1007/s10915-010-9374-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9374-1

Keywords

Navigation