Abstract
The problem of packing a given set of freely translated and rotated convex polygons in a minimum-perimeter convex polygon (in particular the minimum-perimeter convex hull) is introduced. A mathematical model of the problem using the phi-function technique is provided. Problem instances with up to 6 convex polygons are solved by the global NLP solver BARON to get a minimum-perimeter convex hull. Numerical experiments for larger instances are reported using the local NLP solver IPOPT.











Similar content being viewed by others
References
Ahn, H.K., Cheong, O.: Aligning two convex figures to minimize area or perimeter. Algorithmica 62, 464–479 (2012). https://doi.org/10.1007/s00453-010-9466-1
Alt, H., de Berg, M., Knauer, C.: Approximating minimum-area rectangular and convex containers for packing convex polygons. In: Bansal, N., Finocchi, I. (eds.) Algorithms—ESA 2015. Lecture Notes in Computer Science, vol. 9294. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-48350-3_3
Araújo, L.J.P., Özcan, E., Atkin, J.A.D., Baumers, M.: Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset. Int. J. Prod. Res. 57(18), 5920–5934 (2019). https://doi.org/10.1080/00207543.2018.1534016
Avis, D., Bremner, D., Seidel, R.: How good are convex hull algorithms? Comput. Geom. Theory Appl. 7(5–6), 265–301 (1997). https://doi.org/10.1016/S0925-7721(96)00023-5
Bennell, J.A., Oliveira, J.F.: The geometry of nesting problems: a tutorial. Eur. J. Oper. Res. 184(2), 397–415 (2008). https://doi.org/10.1016/j.ejor.2006.11.038
Bennell, J.A., Oliveira, J.F.: A tutorial in irregular shape packing problems. J. Oper. Res. Soc. 60(1), 93–105 (2009). https://doi.org/10.1057/jors.2008.169
Bennell, J., Scheithauer, G., Stoyan, Y., Romanova, T., Pankratov, A.: Optimal clustering of a pair of irregular objects. J. Global Optim. 61(3), 497–524 (2015). https://doi.org/10.1007/s10898-014-0192-0
De Berg, M., Otfried, C., Marc, V.K., Mark, O.: Computational Geometry Algorithms and Applications, pp. 2–14. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-77974-2
Chernov, N., Stoyan, Y., Romanova, T.: Mathematical model and efficient algorithms for object packing problem. Comput. Geom. Theory Appl. 43(5), 535–553 (2010). https://doi.org/10.1016/j.comgeo.2009.12.003
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press and McGraw-Hill (2001). ISBN 0-262-03293-7. Section 33.3: Finding the convex hull, 947–957
Dumonteil, E., Majumdar, S.N., Rosso, A., Zoia, A.: Spatial extent of an outbreak in animal epidemics. Proc. Natl. Acad. Sci. USA 110(11), 4239–4244 (2013). https://doi.org/10.1073/pnas.1213237110
Fasano, G.: Non-standard packing problems: a modelling-based approach. In: Solving Non-standard Packing Problems by Global Optimization and Heuristics. Springer Briefs in Optimization. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05005-8_1
Gimenez-Palacios, I., Alonso, M.T., Alvarez-Valdes, R., Parreño, F.: Logistic constraints in container loading problems: the impact of complete shipment conditions. TOP (2020). https://doi.org/10.1007/s11750-020-00577-8
Grebennik, I.V., Kovalenko, A.A., Romanova, T.E., Urniaieva, I.A., Shekhovtsov, S.B.: Combinatorial configurations in balance layout optimization problems. Cybern. Syst. Anal. 54(2), 221–231 (2018). https://doi.org/10.1007/s10559-018-0023-2
Jones, D.R.: A fully general, exact algorithm for nesting irregular shapes. J. Global Optim. 59, 367–404 (2013). https://doi.org/10.1007/s10898-013-0129-z
Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Global Optim. 43, 299–328 (2009). https://doi.org/10.1007/s10898-007-9274-6
Kallrath, J., Frey, M.M.: Minimal surface convex hulls of spheres. Vietnam J. Math. 46, 883–913 (2018). https://doi.org/10.1007/s10013-018-0317-8
Kallrath, J., Frey, M.M.: Packing circles into perimeter-minimizing convex hulls. J. Global Optim. 73(4), 723–759 (2019). https://doi.org/10.1007/s10898-018-0724-0
Kampas, F.J., Pintér, J.D., Castillo, I.: Optimal packing of general ellipses in a circle. In: Takáč, M., Terlaky, T. (eds.) Modeling and Optimization: Theory and Applications. MOPTA 2016. Springer Proceedings in Mathematics & Statistics, vol. 213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66616-7_2
Kampas, F.J., Castillo, I., Pintér, J.D.: Optimized ellipse packings in regular polygons. Optim. Lett. 13(7), 1583–1613 (2019). https://doi.org/10.1007/s11590-019-01423-y
Kampas, F.J., Pintér, J.D., Castillo, I.: Packing ovals in optimized regular polygons. J. Glob. Optim. 77, 175–196 (2020)
Khajavirad, A., Sahinidis, N.V.: A hybrid LP/NLP paradigm for global optimization relaxations. Math. Program. Comput. 10, 383–421 (2018)
Leao, A.A.S., Toledo, F.M.B., Oliveira, J.F., Carravilla, M.A., Alvarez-Valdés, R.: Irregular packing problems: a review of mathematical models. Eur. J. Oper. Res. 282(3), 803–822 (2020). https://doi.org/10.1016/j.ejor.2019.04.045
Litvinchev, I., Rangel, S.: Localization of the optimal solution and a posteriori bounds for aggregation. Comput. Oper. Res. 26(10–11), 967–988 (1999)
Litvinchev, I., Mata, M., Rangel, S., Saucedo, J.: Lagrangian heuristic for a class of the generalized assignment problems. Comput. Math. Appl. 60(4), 1115–1123 (2010)
Pankratov, A., Romanova, T., Litvinchev, I.: Packing ellipses in an optimized convex polygon. J. Global Optim. 75(2), 495–522 (2019)
Pankratov, A., Romanova, T., Litvinchev, I.: Packing ellipses in an optimized rectangular container. Wirel. Netw. 26(7), 4869–4879 (2020)
Park, D., Bae, S.W., Alt, H., Ahn, H.K.: Bundling three convex polygons to minimize area or perimeter. Comput. Geom. 51, 1–14 (2016). https://doi.org/10.1016/j.comgeo.2015.10.003
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)
Romanova, T., Bennell, J., Stoyan, Y., et al.: Packing of concave polyhedra with continuous rotations using nonlinear optimisation. Eur. J. Oper. Res. 268, 37–53 (2018)
Romanova, T., Litvinchev, I., Pankratov, A.: Packing ellipsoids in an optimized cylinder. Eur. J. Oper. Res. 285, 429–443 (2020)
Sahinidis, N.V.: BARON 19.12.7: global optimization of mixed-integer nonlinear programs, User's manual (2019)
Scheithauer, G.: Introduction to Cutting and Packing Optimization. Problems, Modeling Approaches, Solution Methods. Springer, Cham (2018). ISBN 978-3-319-64403-5
Stoyan, Yu., Pankratov, A., Romanova, T.: Quasi-phi-functions and optimal packing of ellipses. J. Global Optim. 65(2), 283–307 (2016). https://doi.org/10.1007/s10898-015-0331-2
Stoyan, Y., Pankratov, A., Romanova, T.: Placement problems for irregular objects: mathematical modeling, optimization and applications. In: Butenko, S., Pardalos, P., Shylo, V. (eds.) Optimization Methods and Applications. Springer Optimization and Its Applications, vol. 130. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68640-0_25
Stoyan, Y., Pankratov, A., Romanova, G., Fasano, J., Pinter, T., Stoian, Y.E., Chugay, A.: Optimized packings in space engineering applications: part I. In: Fasano, G., Pintér, J. (eds.) Modeling and Optimization in Space Engineering. Springer Optimization and Its Applications, vol. 144, pp. 395–437. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10501-3_15
Tang, K., Wang, C.C.L., Chen, D.Z.: Minimum area convex packing of two convex polygons. Int. J. Comput. Geom. Appl. 16(1), 41–74 (2006). https://doi.org/10.1142/S0218195906001926
Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005). https://doi.org/10.1007/s10107-005-0581-8
Torres-Escobar, R., Marmolejo-Saucedo, J.A., Litvinchev, I.: Binary monkey algorithm for approximate packing non-congruent circles in a rectangular container. Wirel. Netw. 26(7), 4743–4752 (2020)
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y
Warade, A., Mulay, P., Chaudhari, A.: Packing irregular shapes for three-dimensional printing: a bibliographical study. Int. J. Sci. Tech. Res. 9(2), 773–779 (2020)
Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007). https://doi.org/10.1016/j.ejor.2005.12.047
Yagiura, M., Umetani, S., Imahori, S.: Cutting and Packing Problems. From the Perspective of Combinatorial Optimization. Springer, Berlin (2021). ISBN 978-4-431-55291-8
Acknowledgements
This research is partially supported by National Research Foundation of Ukraine (Grant No. 2020.02/0128) and Volkswagen Foundation Grant #Az97775.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix: On an analytical solution for the minimum perimeter convex hull of two triangles
Appendix: On an analytical solution for the minimum perimeter convex hull of two triangles
For the case of two triangles, we may expect geometrical characteristics of the optimal layout. Leaving the rigorous proof for our forthcoming paper, we present here these characteristics in the form of the following conjecture.
Conjecture
The minimal perimeter convex hull for two triangles corresponds to a layout with two tangent largest sides of the triangles (see Fig.
12).
The motivation for this conjecture is as follows. If the triangles have no common points (totally separated), then we can move one triangle till they are tangent thus reducing the perimeter. Suppose that there is only one tangent point (a vertex of the triangle). Then we can rotate the corresponding triangle around its tangent vertex till the triangles have tangent sides and thus reducing the perimeter. Finally, among all layouts with tangent sides, the case of tangent largest sides corresponds to the minimal perimeter convex hull by the triangle inequality. The rigorous proof of this conjecture is on the way.
Suppose that we have two triangles with their largest tangent sides. Then to get a layout with minimum perimeter convex hull we must define the position of the vertex of one triangle on the tangent side of another (see Fig. 12). This can be done as follows.
Consider two triangles with vertices \(A_{i}\), \(B_{i}\), and \(C_{i}\), sides \(a_{i}\), \(b_{i}\), and \(c_{i}\), and internal angles \(\alpha_{i}\), \(\beta_{i}\), and \(\gamma_{i}\), \(i = 1,2\). The naming is such, that \(c_{1} = A_{1} B_{1}\) is the largest side of the triangle 1 and that \(c_{1}\) is greater than or equal to the largest side of the triangle 2. Therefore,\(A_{1}\) and \(B_{1}\) are vertices of the convex hull polygon \({\rm P}\).
Triangle 1 is placed such that its vertex \(A_{1}\) is in the origin of the \(x\)\(- y\)-coordinate system, \(B_{1}\) is at \((c,0)\), and \(C_{1}\) is in the fourth quadrant with at \((x_{1} ,y_{1} )\) with \(x_{1} > 0\) and \(y_{1} < 0\). \(C_{1}\) is another vertex of the convex hull polygon \({\rm P}\).
If we place triangle 2 such that \(A_{2}\) and \(B_{2}\) are on the positive axis with \(0 \le x_{2A} < c\) and \(0 < x_{2B} < c\), then \(C_{2}\) at \((x_{2} ,y_{2} )\) completes the system of vertices of \({\rm P}\) (Fig. 12).
The \(y_{2}\)-coordinate follows from the triangle itself; it is just its height, i.e.,
where \((v_{{x_{2A} }} ,v_{{y_{2A} }} ) = (0,0)\), \((v_{{x_{2B} }} ,v_{{y_{2B} }} )\) and \((v_{{x_{2C} }} ,v_{{y_{2C} }} )\) are the intrinsic vertex coordinates of triangle 2.
As
and
the convex hull perimeter ℓ = ℓ(P) depends only on one variable \(x = x_{2A}\):
The contributions \(a_{1}\) and \(b_{1}\) are constant and can be computed a priori—for this arrangement of the two triangles. Other arrangements—in which the two triangles have one touching line—follow by permutations and can be evaluated similarly.
For simplification, let us introduce
and follow up with
Now we consider \(l^{\prime}(u)\) and \(l^{\prime\prime}(u)\) to find the local minimum \(u_{*}\):
and
For \(u_{*} = \frac{{c_{1} }}{2}\) the first derivative \(l^{\prime}(u_{*} )\) vanishes. The second derivative takes the value
which is always positive, i.e., we have a local minimum at \(u_{*} = \frac{{c_{1} }}{2}\), or
Rights and permissions
About this article
Cite this article
Kallrath, J., Romanova, T., Pankratov, A. et al. Packing convex polygons in minimum-perimeter convex hulls. J Glob Optim 85, 39–59 (2023). https://doi.org/10.1007/s10898-022-01194-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-022-01194-4