Abstract
The tolerance of an element of a combinatorial optimization problem with respect to its optimal solution is the maximum change of the cost of the element while preserving the optimality of the given optimal solution and keeping all other input data unchanged. Tolerances play an important role in the design of exact and approximation algorithms, but the computation of tolerances requires additional computational time. In this paper, we concentrate on combinatorial optimization problems for which the computation of all tolerances and an optimal solution have almost the same computational complexity as of finding an optimal solution only. We summarize efficient computational methods for computing tolerances for these problems and determine their time complexity experimentally.
Similar content being viewed by others
References
Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2004)
Almoustafa, S., Hanafi, S., Mladenovic, N.: New exact method for large asymmetric distance-constrained vehicle routing problem. Eur. J. Oper. Res. 226, 386–394 (2013)
Balas, E., Toth, P.: Branch and bound methods. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.) Chapter 10 of the Traveling Salesman Problem, pp. 361–401. Wiley, Chichester (1985)
Batsyn, M., Goldengorin, B.I., Kocheturov, A., Pardalos, P.M.: Tolerance-based versus cost-based branching for the asymmetric capacitated vehicle routing problem. In: Goldengorin, B.I. et al. (eds.) Models, Algorithms, and Technologies for Network Analysis. Proceedings in Mathematics and Statistics, vol. 59, Springer, Berlin (2013)
Bekker, H., Braad, E.P., Goldengorin, B.: Using bipartite and multidimensional matching to select the roots of a system of polynomial equations. Lect. Notes Comput. Sci. 3483, 397–406 (2005)
Bekker, H., Braad, E.P., Goldengorin, B.: Selecting the roots of a small system of polynomial equations by tolerance-based matching. Lect. Notes Comput. Sci. 3503, 610–613 (2005)
Booth, H., Westbrook, J.: A linear algorithm for analysis of minimum spanning and shortest-path trees of planar graphs. Algorithmica 11, 341–352 (1994)
Chen, C., Kuo, M., Sheu, J.: An optimal time algorithm for finding a maximum weight independent set in a tree. BIT Numer. Math. 28, 353–356 (1988)
Chin, F., Houck, D.: Algorithms for updating minimal spanning trees. J. Comput. Syst. Sci. 16, 333–344 (1978)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Section 24.3: Dijkstra’s Algorithm in Introduction to Algorithms, 2nd edn, pp. 595–601. MIT Press and McGraw Hill, NewYork (2001)
Dell’Amico, M., Toth, P.: Algorithms and codes for dense assignment problems: the state of the art. Discrete Appl. Math. 140, 1–3 (2004)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
DIMACS, Benchmark instance generates for the ATSP. http://dimacs.rutgers.edu/Challenges/TSP/atsp.html (2006)
Dixon, B., Rauch, M., Tarjan, R.E.: Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM J. Comput. 21(6), 1184–1192 (1992)
Fischetti, M., Toth, P., Vigo, D.: A branch-and-bound algorithm for the capacitated vehicle routing problem on directed graphs. Oper. Res. 42(5), 846–859 (1994)
Fisher, M.L.: The Lagrangian relaxation method for solving integer programming problems. Manag. Sci. 27(1), 1–18 (1981)
Germs, R., Goldengorin, B., Turkensteen, M.: Lower tolerance-based branch and bound algorithms for the ATSP. Comput. Oper. Res. 39(2), 291–298 (2012)
Ghosh, D., Goldengorin, B., Gutin, G., Jäger, G.: Tolerance-based algorithms for the traveling salesman problem. In: Neogy, S.K., Bapat, R.B., Das, A.K., Parthasarathy, T. (eds.) Mathematical Programming and Game Theory for Decision Making. Statistical Science Interdisciplinary Research, 47–59, World Scientific Publication, Hackensack, NJ (2008)
Ghosh, D., Goldengorin, B., Gutin, G., Jäger, G.: Tolerance-based algorithms for the traveling salesman problem. In: Neogy, S.K., Bapat, R.B., Das, A.K., Parthasarathy, T. (eds.) Chapter of Mathematical Programming and Game Theory for Decision Making, pp. 47–59. World Scientific, New Jersey (2008)
Goldengorin, B., Jäger, G., Molitor, P.: Some Basics on Tolerances. In: Cheng, S.-W., Poon, C.K. (eds.) Proceedings of the 2nd International Conference on Algorithmic Aspects in Information and Management (AAIM). Lecture Notes in Computer Science 4041, 194–206 (2006)
Goldengorin, B., Jäger, G. Molitor, P.: Tolerance-based Contract-or-Patch Heuristic for the Asymmetric TSP. In: Erlebach, T. (ed.) Proceedinggs 3rd Workshop on Combinatorial and Algorithmic Aspects of Networking (CAAN). Lecture Notes in Computer Science 4235, 86–97 (2006)
Goldengorin, B., Sierksma, G., Turkensteen, M.: Tolerance-based algorithms for the ATSP. In: Hromkovic, J., Nagl, M., Westfechtel, B. (eds.) Proceedings of the 30th International Workshop on Graph-Theoretic Concepts in Computer Science (WG). Lecture Notes in Computer Science 3353, 222–234 (2004)
Goldengorin, B., Sierksma, G.: Combinatorial Optimization Tolerances Calculated in Linear Time. Research Report 03A30, Graduate School/Research Institute Systems, Organizations and Management, University of Groningen, Groningen, The Netherlands (2003)
Goldengorin, B., Malyshev, D.S., Pardalos, P.M.: Efficient computation of tolerances in weighted independent set problems for trees. Dokl. Math. 87(3), 368–371 (2013)
Goldengorin, B., Malyshev, D.S., Pardalos, P.M., Zamaraev, V.A.: A tolerance-based heuristic for the weighted independent set problem. J. Comb. Optim. 29, 433–450 (2015)
Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Ann. Hist. Comput. 7(1), 43–57 (1985)
Held, M., Karp, R.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18, 1138–1162 (1970)
Helsgaun, K.: An effective implementation of the Lin–Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)
Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research, 6th edn. McGraw Hill, Singapore (1995)
Johnson, D.S., Gutin, G., McGeoch, L.A., Yeo, A., Zhang, W., Zverovich, A.: Experimental analysis of heuristics for the ATSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and its Variations, pp. 445–487. Kluwer Academic Publishers, Berlin (2002)
Jonker, R., Volgenant, A.: Assignment Solver Code. http://www.assignmentproblems.com/LAPJV.htm (1986)
Jonker, R., Volgenant, A.: Improving the Hungarian assignment algorithm. Oper. Res. Lett. 5, 171–175 (1986)
Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38, 325–340 (1987)
Kindervater, G., Volgenant, A., de Leve, G., van Gijlswijk, V.: On dual solutions of the linear assignment problem. Eur. J. Oper. Res. 19(1), 76–81 (1985)
Kruskal, J.B.: On the shortest spanning tree of a graph and the traveling salesman problem. Proc. Am. Soc. 7, 48–50 (1956)
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2, 83–97 (1955)
Lin, C.J., Wen, U.P.: Sensitivity analysis of the optimal assignment. Eur. J. Oper. Res. 149(1), 35–46 (2003)
Malyshev, D.S., Pardalos, P.M.: Efficient computation of tolerances in the weighted independent set problem for some classes of graphs. Dokl. Math. 89(2), 253–256 (2014)
Pettie, S.: Sensitivity analysis of minimum spanning trees in sub-inverse-ackermann time. In: Deng, X., Du, D., (eds.): ISAAC 2005, LNCS 3827 964–973 (2005)
Pettie, S., Ramachandran, V.: An optimal minimum spanning tree algorithm. J. ACM 49(1), 16–34 (2002)
Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Technol. J. 36, 1389–1401 (1957)
Ramaswamy, R., Orlin, J.B., Chakravarti, N.: Sensitivity analysis for shortest path problems and maximum capacity path problems in undirected graphs. Math. Program. Ser. A 102, 355–369 (2005)
Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)
Reinfeld, N.V., Vogel, W.R.: Mathematical Programming. Prentice-Hall, Englewood Cliffs, NJ (1958)
Richter, D., Goldengorin, B., Jager, G., Molitor, P.: Improving the efficiency of Helsgaun’s Lin–Kernighan heuristic for the symmetric TSP. Lect. Notes Comput. Sci. 4852, 99–111 (2007)
Salles da Cunha, A., Lucena, A.: Lower and upper bounds for the degree-constrained minimum spanning tree problem. Networks 50(1), 55–66 (2007)
Shier, D.R., Witzgall, C.: Arc tolerances in minimum-path and network flow problems. Networks 10, 277–291 (1980)
Tarjan, R.E.: Sensitivity analysis of minimum spanning trees and shortest path trees. Inf. Process. Lett. 14(1), 30–33 (1982)
Toth, P.: Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems. Eur. J. Oper. Res. 125, 222–238 (2000)
Tsplib (Website to [44]). http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
Turkensteen, M., Ghosh, D., Goldengorin, B., Sierksma, G.: Tolerance-based branch and bound algorithms for the ATSP. Eur. J. Oper. Res. 189(3), 775–788 (2008)
Volgenant, A.: A Lagrangean approach to the degree-constrained minimum spanning tree problem. Eur. J. Oper. Res. 39, 325–331 (1989)
Volgenant, A.: An addendum on sensitivity analysis of the optimal assignment. Eur. J. Oper. Res. 169, 338–339 (2006)
Volgenant, T., Jonker, R.: The symmetric traveling salesman problem and edge exchanges in minimal 1-trees. Eur. J. Oper. Res. 12, 394–403 (1983)
Acknowledgements
The research of D.S. Malyshev and P.M. Pardalos is partially supported by LATNA laboratory, National Research University Higher School of Economics. B. Goldengorin’s research is supported by C. Paul Stocker Visiting Professorship provided by the Department of Industrial and Systems Engineering, The Russ College of Engineering, Ohio University, Athens, OH, USA.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Turkensteen, M., Malyshev, D., Goldengorin, B. et al. The reduction of computation times of upper and lower tolerances for selected combinatorial optimization problems. J Glob Optim 68, 601–622 (2017). https://doi.org/10.1007/s10898-016-0486-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-016-0486-5