Conic approximation to nonconvex quadratic programming with convex quadratic constraints | Journal of Global Optimization Skip to main content
Log in

Conic approximation to nonconvex quadratic programming with convex quadratic constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, a conic reformulation and approximation is proposed for solving a nonconvex quadratic programming problem subject to several convex quadratic constraints. The original problem is transformed into a linear conic programming problem, which can be approximated by a sequence of linear conic programming problems over the dual cone of the cone of nonnegative quadratic functions. Since the dual cone of the cone of nonnegative quadratic functions has a linear matrix inequality representation, each linear conic programming problem in the sequence can be solved efficiently using the semidefinite programming techniques. In order to speed up the convergence of the approximation sequence and relieve the computational effort in solving the linear conic programming problems, an adaptive scheme is adopted in the proposed algorithm. We prove that the lower bounds generated by the linear conic programming problems converge to the optimal value of the original problem. Several numerical examples are used to illustrate how the algorithm works and the computational results demonstrate the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43, 471–484 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programs. Math. Programm. 87, 131–152 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization, Analysis, Algorithms and Engineering Applications. MPS/SIAM Series on Optimization. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  5. Burer, S., Anstreicher, K.M.: Second-order-cone constraint for extended trust-region subproblems. SIAM J. Optim. 23(1), 432–451 (2013)

  6. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Programm. 113, 259–282 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Celis, M.R., Dennis, J.E., Tapia, R.A.: A trust region strategy for nonliear equality constrained optimization. In: Boggs, P.T., Byrd, R.H., Schnabel, R.B. (eds.) Numerical Optimzation 1984: Procedding of the SIAM Conference on Numerical Optimization, Boulder, Colorado, pp. 71–82. SIAM, Philadelphia (1985)

  8. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS/SIAM Series on Optimization. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  9. Czyzyk, J., Mesnier, M., Moré, J.: The NEOS server. J. IEEE Comput. Sci. Eng. 5, 68–75 (1998)

    Article  Google Scholar 

  10. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx/, April (2011)

  11. Lu, C., Fang, S.-C., Jin, Q., Wang, Z., Xing, W.: KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems. SIAM J. Optim. 21, 1475–1490 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lu, C., Jin, Q., Fang, S.-C., Wang, Z., Xing, W.: Adaptive computable approximation to cones of nonnegative quadratic functions. Optimization (2014, to appear). doi:10.1080/02331934.2014.8958993

  13. Luo, Z.-Q., Ma, W.-K., So, A., Ye, Y., Zhang, S.: Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27, 20–34 (2010)

    Article  Google Scholar 

  14. Pardalos, P., Vavasis, S.: Quadratic programming with one negative eigenvalue is NP-hard. J. Glob. Optim. 1, 15–22 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for (0, 1)-quadratic programming. J. Glob. Optim. 7, 51–73 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Quist, A.J., de Klerk, E., Roos, C., Terlaky, T.: Copositive relaxation for genreal quadratic programming. Optim. Methods Softw. 9, 185–208 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rendl, F., Wolkowicz, H.: A semidefinite framework for trust region subproblems with applications to large scale minimization. Math. Program. 77, 273–299 (1997)

    MATH  MathSciNet  Google Scholar 

  18. Rockafellar, R.T.: Convex Analysis. Princeton University Press, New Jersey (1972)

    Google Scholar 

  19. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discret. Math. 3, 411–430 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shor, N.Z.: Quadratic optimization problems. Sov. J. Comput. Syst. Sci. 25, 1–11 (1987)

    MATH  MathSciNet  Google Scholar 

  22. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28, 246–267 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14, 245–267 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zheng, X.J., Sun, X.L., Li, D.: Nonconvex quadratically constrained quadratic programming: best D.C. decomposition and their SDP represetations. J. Glob. Optim. 50, 695–712 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingwei Jin.

Additional information

Deng’s research has been supported by the Edward P. Fitts Fellowship at NCSU, Fang’s research by the US National Science Foundation Grant No. DMI-0553310, Jin’s research by the National Natural Science Foundation of China Grant No. 11301479 and the project supported by Zhejiang Provincial Natural Science Foundation of China No. LQ13A010001, Lu’s research has been supported by the Doctoral Research Innovation Fund of Tsinghua University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Fang, SC., Jin, Q. et al. Conic approximation to nonconvex quadratic programming with convex quadratic constraints. J Glob Optim 61, 459–478 (2015). https://doi.org/10.1007/s10898-014-0195-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0195-x

Keywords

Navigation