Approximate KKT points and a proximity measure for termination | Journal of Global Optimization Skip to main content
Log in

Approximate KKT points and a proximity measure for termination

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Karush–Kuhn–Tucker (KKT) optimality conditions are often checked for investigating whether a solution obtained by an optimization algorithm is a likely candidate for the optimum. In this study, we report that although the KKT conditions must all be satisfied at the optimal point, the extent of violation of KKT conditions at points arbitrarily close to the KKT point is not smooth, thereby making the KKT conditions difficult to use directly to evaluate the performance of an optimization algorithm. This happens due to the requirement of complimentary slackness condition associated with KKT optimality conditions. To overcome this difficulty, we define modified \({\epsilon}\)-KKT points by relaxing the complimentary slackness and equilibrium equations of KKT conditions and suggest a KKT-proximity measure, that is shown to reduce sequentially to zero as the iterates approach the KKT point. Besides the theoretical development defining the modified \({\epsilon}\)-KKT point, we present extensive computer simulations of the proposed methodology on a set of iterates obtained through an evolutionary optimization algorithm to illustrate the working of our proposed procedure on smooth and non-smooth problems. The results indicate that the proposed KKT-proximity measure can be used as a termination condition to optimization algorithms. As a by-product, the method helps to find Lagrange multipliers correspond to near-optimal solutions which can be of importance to practitioners. We also provide a comparison of our KKT-proximity measure with the stopping criterion used in popular commercial softwares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreani, R., Haeser, G., Martinez, J. M.: On sequential optimality conditions for smooth constrained optimization. Optim. Online (2009)

  2. Andreani R., Martinez J. M., Svaiter B. F.: A new sequential optimality condition for constrained optimization and algorithmic consequences. SIAM J. Opt. 20, 3533–3554 (2010)

    Article  Google Scholar 

  3. Byrd R. H., Hribar M. E., Nocedal J.: An interior point algorithm for large scale nonlinear programming. SIAM J. Optim. 9, 877–900 (1997)

    Article  Google Scholar 

  4. Byrd R. H., Nocedal J., Waltz R. A.: KNITRO: An integrated package for nonlinear optimization, pp. 35–59. Springer, Berlin (2006)

    Google Scholar 

  5. Clarke, F. H.: Optimization and nonsmooth anslysis. Wiley-Interscience (1983)

  6. Deb K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)

    Article  Google Scholar 

  7. Deb, K., Tiwari, R., Dixit, M., Dutta, J.: Finding trade-off solutions close to KKT points using evolutionary multi-objective optimization. In: Proceedings of the Congress on Evolutionary Computation (CEC-2007), pp. 2109–2116 (2007)

  8. Fletcher R., Reeves C. M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)

    Article  Google Scholar 

  9. Hamel A.: An ε-lagrange multiplier rule for a mathematical programming problem on banach spaces. Optimization 49, 137–149 (2001)

    Article  Google Scholar 

  10. Hock W., Schittkowski K.: Test Examples for Nonlinear Programming Codes. Springer, New York (1981)

    Book  Google Scholar 

  11. Liang, J. J., Runarsson, T. P., Mezura-Montes E., Clerc M., Suganthan P. N., Coello Coello C. A., Deb, K.: Special session on constrained real-parameter optimization (http://www.ntu.edu.sg/home/epnsugan/) (2006)

  12. Miettinen K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)

    Google Scholar 

  13. Moler, C.: The mathworks: MATLAB requirements (1985)

  14. Nocedal J., Wright S. J.: Numerical Optimization. 2nd edn. Springer Series in Operations Research, Berlin (2006)

    Google Scholar 

  15. Rockafellar R. T.: Convex Analysis. Princeton University Press, Princeton (1996)

    Google Scholar 

  16. Watlz, R. A., Plantenga, T. D.: Knitro’s User Manual Version 6.0. Ziena Optimization (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyanmoy Deb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, J., Deb, K., Tulshyan, R. et al. Approximate KKT points and a proximity measure for termination. J Glob Optim 56, 1463–1499 (2013). https://doi.org/10.1007/s10898-012-9920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9920-5

Keywords

Navigation