On the contraction-proximal point algorithms with multi-parameters | Journal of Global Optimization
Skip to main content

On the contraction-proximal point algorithms with multi-parameters

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we consider the contraction-proximal point algorithm: \({x_{n+1}=\alpha_nu+\lambda_nx_n+\gamma_nJ_{\beta_n}x_n,}\) where \({J_{\beta_n}}\) denotes the resolvent of a monotone operator A. Under the assumption that lim n  α n  = 0, ∑ n  α n  = ∞, lim inf n  β n  > 0, and lim inf n γ n  > 0, we prove the strong convergence of the iterates as well as its inexact version. As a result we improve and recover some recent results by Boikanyo and Morosanu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke H.H., Combettes P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    Article  Google Scholar 

  2. Boikanyo O.A., Morosanu G.: A proximal point algorithm converging strongly for general errors. Optim. Lett. 4, 635–641 (2010)

    Article  Google Scholar 

  3. Boikanyo O.A., Morosanu G.: Four parameter proximal point algorithms. Nonlinear Anal. 74, 544–555 (2011)

    Article  Google Scholar 

  4. Boikanyo, O.A., Morosanu, G.: Inexact Halpern-type proximal point algorithm, J. Glob. Optim. (to appear)

  5. Goebel K., Kirk W.A.: Topics on Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  6. Güler O.: On the convergence of the proximal point algorithm for convex optimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  Google Scholar 

  7. Kamimura S., Takahashi W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226–240 (2000)

    Article  Google Scholar 

  8. Lehdili N., Moudafi A.: Combining the proximal algorithm and Tikhonov method. Optimization 37, 239–252 (1996)

    Article  Google Scholar 

  9. Maingé P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899–912 (2008)

    Article  Google Scholar 

  10. Marino G., Xu H.K.: Convergence of generalized proximal point algorithm. Comm. Pure Appl. Anal. 3, 791–808 (2004)

    Article  Google Scholar 

  11. Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  Google Scholar 

  12. Solodov M.V., Svaiter B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program. Ser. A 87, 189–202 (2000)

    Google Scholar 

  13. Song Y., Yang C.: A note on a paper “A regularization method for the proximal point algorithm”. J. Global Optim. 43, 171–174 (2009)

    Article  Google Scholar 

  14. Wang F.: A note on the regularized proximal point algorithm. J. Glob. Optim. 50, 531–535 (2011)

    Article  Google Scholar 

  15. Xu H.K.: A regularization method for the proximal point algorithm. J. Glob. Optim. 36, 115–125 (2006)

    Article  Google Scholar 

  16. Xu H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  Google Scholar 

  17. Yao Y., Noor M.A.: On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math. 217, 46–55 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenghui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Cui, H. On the contraction-proximal point algorithms with multi-parameters. J Glob Optim 54, 485–491 (2012). https://doi.org/10.1007/s10898-011-9772-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9772-4

Keywords

Mathematics Subject Classification (2000)