Inverse 1-median problem on trees under weighted Hamming distance | Journal of Global Optimization Skip to main content
Log in

Inverse 1-median problem on trees under weighted Hamming distance

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The inverse 1-median problem consists in modifying the weights of the customers at minimum cost such that a prespecified supplier becomes the 1-median of modified location problem. A linear time algorithm is first proposed for the inverse problem under weighted l norm. Then two polynomial time algorithms with time complexities O(n log n) and O(n) are given for the problem under weighted bottleneck-Hamming distance, where n is the number of vertices. Finally, the problem under weighted sum-Hamming distance is shown to be equivalent to a 0-1 knapsack problem, and hence is \({\mathcal{NP}}\) -hard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh B., Burkard R.E., Pferschy U.: Inverse 1-center location problems with edge length augmentation on trees. Computing 86(4), 331–343 (2009)

    Article  Google Scholar 

  2. Balas E., Zemel E.: An algorithm for large zero-one knapsack problems. Oper. Res. 28, 1130–1154 (1980)

    Article  Google Scholar 

  3. Bonab F.B., Burkard R.E., Alizadeh B.: Inverse median location problems with variable coordinates. Cen. Eur. J. Oper. Res. 18(3), 365–381 (2010)

    Article  Google Scholar 

  4. Burkard R.E., Galavii M., Gassner E.: The inverse Fermat-Weber problem. Eur. J. Oper. Res. 206(1), 11–17 (2010)

    Article  Google Scholar 

  5. Burkard R.E., Pleschiutschnig C., Zhang J.: Inverse median problems. Discrete Optim. 1, 23–39 (2004)

    Article  Google Scholar 

  6. Burkard R.E., Pleschiutschnig C., Zhang J.Z.: The inverse 1-median problem on a cycle. Discrete Optim. 5, 242–253 (2008)

    Article  Google Scholar 

  7. Cai M., Yang X., Zhang J.: The complexity analysis of the inverse center location problem. J. Glob. Optim. 5, 213–218 (1999)

    Article  Google Scholar 

  8. Cao, Y.B., Guan, X.C.: A class of constrained inverse bottleneck optimization problems under weighted Hamming distance. In: Proceedings of International Joint Conference on Computational Sciences and Optimization, IEEE Computer Society vol. 2, pp. 859–863 (2009)

  9. Duin C.W., Volgenant A.: Some inverse optimization problems under the Hamming distance. Eur. J. Oper. Res. 170, 887–899 (2006)

    Article  Google Scholar 

  10. Galavii, M.: Inverse 1-median problems. Ph.D. Thesis, Institute of Optimization and Discrete Mathematics, Graz University of Technology, Graz (2008)

  11. Gassner E.: The inverse 1-Maxian problem with edge length modiffication. J. Comb. Optim. 16, 50–67 (2008)

    Article  Google Scholar 

  12. Goldman A.J.: Optimal center location in simple networks. Transp. Sci. 2, 77–91 (1962)

    Google Scholar 

  13. Guan, X.C., Zhang, B.W.: Inverse 1-median problem on trees under weighted l norm. Lect. Notes Comput. Sci. 6124, 150–160 (2010)

    Google Scholar 

  14. Guan X.C., Zhang J.Z.: Inverse constrained bottleneck problems under weighted l norm. Comput. Oper. Res. 34, 3243–3254 (2007)

    Article  Google Scholar 

  15. Guan, X.C., Zhang, J.Z.: Inverse bottleneck optimization problems under weighted Hamming distance. Lect. Notes Comput. Sci. 4041, 220–230 (2006)

    Google Scholar 

  16. Hua et al.: Applications of mathematical models to wheat harvesting. Acta Mathematica Sinica 11, 63C75 (1961) (in Chinese) (English translation in Chinese Math. 2, 77C91 (1962))

  17. Pruhs K., Woeginger G.J.: Approximation schemes for a class of subset selection problems. Theor. Comput. Sci. 382, 151–156 (2007)

    Article  Google Scholar 

  18. Silvano M., Toth P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York, NY, USA (1990)

    Google Scholar 

  19. Yang X., Zhang J.: Some inverse min–max network problems under weighted l 1 and l norms with bound constraints on changes. J. Comb. Optim. 13, 123–135 (2007)

    Article  Google Scholar 

  20. Yang X., Zhang J.: Inverse center location problem on a tree. J. Syst. Sci. Complex. 21, 651–664 (2008)

    Article  Google Scholar 

  21. Zhang B., Zhang J., He Y.: Constrained inverse minimum spanning tree problems under the bottleneck-type Hamming distance. J. Glob. Optim. 34, 467–474 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiucui Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, X., Zhang, B. Inverse 1-median problem on trees under weighted Hamming distance. J Glob Optim 54, 75–82 (2012). https://doi.org/10.1007/s10898-011-9742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9742-x

Keywords

Navigation