Existence and stability of minimax regret equilibria | Journal of Global Optimization Skip to main content
Log in

Existence and stability of minimax regret equilibria

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study minimax regret equilibria. First, existence theorem of minimax regret equilibria is proved. Further, the generic stability of minimax regret equilibria is studied. We show that the set of minimax regret equilibria for most of problems (in sense of Baire category) is a singleton set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Renou L., Schlag K.H.: Minimax regret and strategic uncertainty. J. Econ. Theory 145, 264–286 (2010)

    Article  Google Scholar 

  2. Hayashi T.: Regret aversion and opportunity dependence. J. Econ. Theory. 139, 242–268 (2008)

    Article  Google Scholar 

  3. Stoye J.: Axioms for Minimax Regret Choice Correspondences. New York University, Mimeo (2007)

    Google Scholar 

  4. Stoye J.: Statistical Decisions Under Ambiguity. New York University, Mimeo (2007)

    Google Scholar 

  5. Fort M.K. Jr: Essential and nonessential fixed points. Amer. J. Math. 72, 315–322 (1950)

    Article  Google Scholar 

  6. Kinoshita S.: On essential components of the set of fixed points. Osaka J. Math. 4, 19–22 (1952)

    Google Scholar 

  7. Kohlberg E., Mertens J.F.: The strategy stability of equilibria. Econometrica 54, 1005–1037 (1986)

    Article  Google Scholar 

  8. Yu J., Xiang S.W.: On essential component of the set of Nash equilibrium points. Nonlinear Anal. TMA 38, 259–264 (1999)

    Article  Google Scholar 

  9. Jiang J.H.: Essential component of the set of fixed points of the multi-valued maps and its applications to the theory of games. Sci. Sin. 12, 951–964 (1963)

    Google Scholar 

  10. Kenderov, P.S.: Most of the optimization problems have unique solution. In: Brosowski, B., Deutsch, F. (eds.) Proceedings Oberwolhfach Conference on Parametric Optimization, Birkhauser, Basel, pp. 203–216 (1984)

  11. Wu W.J., Jiang J.H.: Essential equilibrium points of n-person noncooperative game. Sci. Sin. 11, 1307–1322 (1962)

    Google Scholar 

  12. Xiang S.W., Xiang S.H.: Generic stability on weight factor in multiobjective optimization problems. Panam. Math. J. 7, 79–84 (1997)

    Google Scholar 

  13. Yang H., Yu J.: On essential components of the set of weakly Pareto-Nash equilibrium. Appl. Math. Lett. 15, 553–560 (2002)

    Article  Google Scholar 

  14. Yu J.: Essential weak efficient solution in multiobjective optimization problems. J. Math. Anal. Appl. 166, 230–235 (1992)

    Article  Google Scholar 

  15. Yu J.: Essential equilibria in game theory. Acta. Math. Appl. Sci. Sin. 16, 153–157 (1993)

    Google Scholar 

  16. Yu J.: Essential equilibria of n-person noncooperative games. J. Math. Econ. 31, 361–372 (1999)

    Article  Google Scholar 

  17. Yu J., Yang H.: The essential component of the set of equilibrium points of set-value maps. J. Math. Anal. Appl. 300, 334–342 (2004)

    Article  Google Scholar 

  18. Yu J., Yang H., Xiang S.W.: Unified approach to existence and stability of essential components. Nonlinear. Anal. TMA. 63, e2415–e2425 (2005)

    Article  Google Scholar 

  19. Klein E., Thompson A.: Theory of Correspondences. Wiley, New York (1984)

    Google Scholar 

  20. Aubin J.P., Ekeland I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    Google Scholar 

  21. Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problem. Springer, Berlin (2010)

    Book  Google Scholar 

  22. Giannessi F., Maugeri A., Pardalos Panos M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Series: Nonconvex Optimization and Its Applications, Vol 58. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  23. Baye M., Morgan J.: Price dispersion in the lab and on the internet: Theory and evidence. RAND J. Econ. 35, 449–466 (2004)

    Article  Google Scholar 

  24. Gilboa I., Schmeidler D.: Maxmin expected utility with non-unique priors. J. Math. Econ. 18, 133–173 (1989)

    Article  Google Scholar 

  25. Milnor, J.: Games against Nature. In: Thrall, R., Coombs, C., Davis , R. (eds.) Decision Processes, pp. 49–60. Wiley, London (1954)

    Google Scholar 

  26. Puppe C., Schlag K.H.: Choice under complete uncertainty when outcome spaces are state dependent. Theory Dec. 66(1), 1–16 (2009)

    Article  Google Scholar 

  27. Bank B., Guddat J., Klatte D., Kummer B., Tammer K.: Nonlinear Parametric Optimization. Basel, Birkhäuser Verlag (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Pu, Y.J. Existence and stability of minimax regret equilibria. J Glob Optim 54, 17–26 (2012). https://doi.org/10.1007/s10898-011-9738-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9738-6

Keywords

Navigation