An exact solution method for unconstrained quadratic 0–1 programming: a geometric approach | Journal of Global Optimization Skip to main content
Log in

An exact solution method for unconstrained quadratic 0–1 programming: a geometric approach

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We explore in this paper certain rich geometric properties hidden behind quadratic 0–1 programming. Especially, we derive new lower bounding methods and variable fixation techniques for quadratic 0–1 optimization problems by investigating geometric features of the ellipse contour of a (perturbed) convex quadratic function. These findings further lead to some new optimality conditions for quadratic 0–1 programming. Integrating these novel solution schemes into a proposed solution algorithm of a branch-and-bound type, we obtain promising preliminary computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abello J., Butenko S., Pardalos P.M., Resende M.G.C.: Finding independent sets in a graph using continuous multivariable polynomial formulations. J. Global Optim. 21, 111–137 (2001)

    Article  Google Scholar 

  2. Adams W.P., Sherali H.D.: A tight linearization and an algorithm for zero-one quadratic programming problems. Manage. Sci. 32, 1274–1290 (1986)

    Article  Google Scholar 

  3. An L.T.H., Tao P.D.: A branch and bound method via D.C. optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems. J. Global Optim. 13, 171–206 (1998)

    Article  Google Scholar 

  4. Barahona F., Jünger M., Reinelt G.: Experiments in quadratic 0–1 programming. Math. Program. 44, 127–137 (1989)

    Article  Google Scholar 

  5. Beasley, E.: Heuristic algorithms for the unconstrained binary quadratic programming problem. Technical report, Imperial College, (1998)

  6. Beasley J.E.: OR-Library (1990), http://people.brunel.ac.uk/~mastjjb/jeb/info.html

  7. Beck A., Teboulle M.: Global optimality conditions for quadratic optimization problems with binary constraints. SIAM J. Optim. 11, 179–188 (2000)

    Article  Google Scholar 

  8. Billionnet A., Elloumi S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math. Program. 109, 55–68 (2007)

    Article  Google Scholar 

  9. Billionnet, A., Elloumi, S., Plateau, M.C.: Convex quadratic progrmaming for exact solution of 0–1 quadratic programs. Technical report, CEDRIC 856 (2005). http://cedric.cnam.fr/publis/rc856.pdf

  10. Billionnet A., Sutter A.: Minimization of a quadratic pseudo-Boolean function. Eur. J. Oper. Res. 78, 106–115 (1994)

    Article  Google Scholar 

  11. Bomze I.M., Budinich M., Pardalos P.M., Pelillo M.: The maximum clique problem. In: Du, D.Z., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization, pp. 1–74. Kluwer, Dordrecht (1999)

    Google Scholar 

  12. Boros E., Hammer P.L.: Pseudo-Boolean optimization. Discr. Appl. Math. 123, 155–225 (2002)

    Article  Google Scholar 

  13. Boros, E., Hammer, P.L., Tavares, G.: Local search heuristics for unconstrained quadratic binary optimization. Technical report, RUTCOR, Rutgers University. Rutcor Research Report (2005)

  14. Carter M.W.: The indefinite zero-one quadratic problem. Discr. Appl. Math. 7, 23–44 (1984)

    Article  Google Scholar 

  15. Chardaire P., Sutter A.: A decomposition method for quadratic zero-one programming. Manage. Sci. 41, 704–712 (1995)

    Article  Google Scholar 

  16. Crama Y., Hansen P., Jaumard B.: The basic algorithm for pseudo-Boolean programming revisited. Discr. Appl. Math. 29, 171–185 (1990)

    Article  Google Scholar 

  17. Delorme C., Poljak S.: Laplacian eigenvalues and the maximum cut problem. Math. Program. 62, 557–574 (1993)

    Article  Google Scholar 

  18. Fortet R.: Applications de lalgebre de Boole en recherche operationelle. Rev. Franc. Recherche Oper. 4, 17–26 (1960)

    Google Scholar 

  19. Fortet R.: L′algebre de boole et ses applications en recherche operationnelle. Trabajos estadística 11, 111–118 (1960)

    Article  Google Scholar 

  20. Gallo G., Hammer P.L., Simeone B.: Quadratic knapsack problems. Math. Program. 12, 132–149 (1980)

    Article  Google Scholar 

  21. Glover F., Kochenberger G.A., Alidaee B.: Adaptive memory tabu search for binary quadratic programs. Manage. Sci. 44, 336–345 (1998)

    Article  Google Scholar 

  22. Glover F., Woolsey R.E.D.: Further reduction of zero-one polynomial programs to zero-one linear programming problems. Oper. Res. 21, 156–161 (1973)

    Article  Google Scholar 

  23. Glover F., Woolsey R.E.D.: Note on converting the 0–1 polynomial programming problem into a 0–1 linear program. Oper. Res. 22, 180–181 (1974)

    Article  Google Scholar 

  24. Goemans M.X., Williamson D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  Google Scholar 

  25. Gulati V.P., Gupta S.K., Mittal A.K.: Unconstrained quadratic bsivalent programming problem. Eur. J. Oper. Res. 15, 121–125 (1984)

    Article  Google Scholar 

  26. Hammer P.L., Hansen P., Simeone B.: Roof duality, complementation and persistency in quadratic 0–1 optimization. Math. Program. 28, 121–155 (1984)

    Article  Google Scholar 

  27. Hammer P.L., Rudeanu S.: Boolean Methods in Operations Research and Related Areas. Springer, Berlin (1968)

    Google Scholar 

  28. Hansen, P., Jaumard, B., Christophe, C.M.: A simple enumerative algorithm for unconstrained 0–1 quadratic programming. Technical report, Groupe d’études et de recherche en analyse des décisions. Cahiers du GERAD G-2000-59 (2000)

  29. Hansen P., Jaumard B., Mathon V.: Constrained nonlinear 0–1 programming. ORSA J. Comput. 5, 97–119 (1993)

    Article  Google Scholar 

  30. Helmberg C., Rendl F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Program. 82, 291–315 (1998)

    Google Scholar 

  31. Huang H.X., Pardalos P.M.: Lower bound improvement and forcing rule for quadratic binary programming. Comput. Optim. Appl. 33, 187–208 (2006)

    Article  Google Scholar 

  32. Iasemidis L.D., Pardalos P.M., Sackellares J.C., Shiau D.-S.: Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. J. Combin. Optim. 5, 9–26 (2001)

    Article  Google Scholar 

  33. Kalantari B., Bagchi A.: An algorithm for quadratic zero-one programs. Naval Res. Logist. 37, 527–538 (1990)

    Article  Google Scholar 

  34. Konno H.: Maximizing a convex quadratic function over a hypercube. J. Oper. Res. Soc. Jpn. 23, 171–189 (1980)

    Google Scholar 

  35. Li D., Sun X.L.: Nonlinear Integer Programming. Springer, New York (2006)

    Google Scholar 

  36. Li D., Sun X.L., Wang F.L.: Convergent Lagrangian and contour-cut method for nonlinear integer programming with a quadratic objective function. SIAM J. Optim. 17, 372–400 (2006)

    Article  Google Scholar 

  37. Li D., Sun X.L., Wang J.: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection. Math. Finance 16, 83–101 (2006)

    Article  Google Scholar 

  38. Liu, W., Wilkins, D., Alidaee B.: A hybrid multi-exchange local search for unconstrained binary quadratic program. Technical report, Hearin Center for Enterprose Science, The University of Mississippi, Working Paper, HCES-09-05 (2005)

  39. Lu S.H.: An improved enumerative algorithm for solving quadratic zero-one programming. Eur. J. Oper. Res. 15, 110–120 (1984)

    Article  Google Scholar 

  40. Mcbride R.D., Yormark J.S.: An implicit enumeration algorithm for quadratic integer programming. Manage. Sci. 26, 282–296 (1980)

    Article  Google Scholar 

  41. Palubeckis G.: A heuristic-based branch and bound algorithm for unconstrained quadratic zero-one programming. Computing 54, 283–301 (1995)

    Article  Google Scholar 

  42. Pardalos P.M., Chaovalitwongse W., Iasemidis L.D., Sackellares J.C., Shiau D.-S., Carney P.R., Prokopyev O.A., Yatsenko V.A.: Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program. Ser. B 101, 365–385 (2004)

    Article  Google Scholar 

  43. Pardalos P.M., Rodgers G.P.: Computational aspects of a branch-and-bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)

    Article  Google Scholar 

  44. Phillips A.T., Rosen J.B.: A quadratic assignment formulation of the molecular conformation problem. J. Global Optim. 4, 229–241 (1994)

    Article  Google Scholar 

  45. Rendl F., Rinaldi G., Wiegele A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Lect. Notes Comput. Sci. 4513, 295–309 (2007)

    Article  Google Scholar 

  46. Sturm J.F.: Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)

    Article  Google Scholar 

  47. Thoai N.V.: Global optimization techniques for solving the general quadratic integer programming problem. Comput. Optim. Appl. 10, 149–163 (1998)

    Article  Google Scholar 

  48. Vanderbussche D., Nemhauser G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102, 371–405 (2005)

    Article  Google Scholar 

  49. Vanderbussche D., Nemhauser G.L.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 102, 531–557 (2005)

    Article  Google Scholar 

  50. Watters L.J.: Reduction of integer polynomial programming problems to zero-one linear programming problems. Oper. Res. 15, 1171–1174 (1967)

    Article  Google Scholar 

  51. Williams, A.C.: Quadratic 0-1 programming using the roof dual with computational results. Technical report, RUTCOR, Rutgers University, RUTCOR Research Report RRR 8-1985 (1985)

  52. Yajima Y., Fujie T.: A polyhedral approach for nonconvex quadratic programming problems with box constraints. J. Global Optim. 13, 151–170 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Li.

Additional information

This work was supported by Research Grants Council of Hong Kong Grants CUHK4245/04E and 413606, by National Natural Science Foundation of China Grants 10971034 and 70832002, and by the Joint NSFC/RGC Grant 71061160506.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Sun, X.L. & Liu, C.L. An exact solution method for unconstrained quadratic 0–1 programming: a geometric approach. J Glob Optim 52, 797–829 (2012). https://doi.org/10.1007/s10898-011-9713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9713-2

Keywords

Navigation