Abstract
We explore in this paper certain rich geometric properties hidden behind quadratic 0–1 programming. Especially, we derive new lower bounding methods and variable fixation techniques for quadratic 0–1 optimization problems by investigating geometric features of the ellipse contour of a (perturbed) convex quadratic function. These findings further lead to some new optimality conditions for quadratic 0–1 programming. Integrating these novel solution schemes into a proposed solution algorithm of a branch-and-bound type, we obtain promising preliminary computational results.
Similar content being viewed by others
References
Abello J., Butenko S., Pardalos P.M., Resende M.G.C.: Finding independent sets in a graph using continuous multivariable polynomial formulations. J. Global Optim. 21, 111–137 (2001)
Adams W.P., Sherali H.D.: A tight linearization and an algorithm for zero-one quadratic programming problems. Manage. Sci. 32, 1274–1290 (1986)
An L.T.H., Tao P.D.: A branch and bound method via D.C. optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems. J. Global Optim. 13, 171–206 (1998)
Barahona F., Jünger M., Reinelt G.: Experiments in quadratic 0–1 programming. Math. Program. 44, 127–137 (1989)
Beasley, E.: Heuristic algorithms for the unconstrained binary quadratic programming problem. Technical report, Imperial College, (1998)
Beasley J.E.: OR-Library (1990), http://people.brunel.ac.uk/~mastjjb/jeb/info.html
Beck A., Teboulle M.: Global optimality conditions for quadratic optimization problems with binary constraints. SIAM J. Optim. 11, 179–188 (2000)
Billionnet A., Elloumi S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math. Program. 109, 55–68 (2007)
Billionnet, A., Elloumi, S., Plateau, M.C.: Convex quadratic progrmaming for exact solution of 0–1 quadratic programs. Technical report, CEDRIC 856 (2005). http://cedric.cnam.fr/publis/rc856.pdf
Billionnet A., Sutter A.: Minimization of a quadratic pseudo-Boolean function. Eur. J. Oper. Res. 78, 106–115 (1994)
Bomze I.M., Budinich M., Pardalos P.M., Pelillo M.: The maximum clique problem. In: Du, D.Z., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization, pp. 1–74. Kluwer, Dordrecht (1999)
Boros E., Hammer P.L.: Pseudo-Boolean optimization. Discr. Appl. Math. 123, 155–225 (2002)
Boros, E., Hammer, P.L., Tavares, G.: Local search heuristics for unconstrained quadratic binary optimization. Technical report, RUTCOR, Rutgers University. Rutcor Research Report (2005)
Carter M.W.: The indefinite zero-one quadratic problem. Discr. Appl. Math. 7, 23–44 (1984)
Chardaire P., Sutter A.: A decomposition method for quadratic zero-one programming. Manage. Sci. 41, 704–712 (1995)
Crama Y., Hansen P., Jaumard B.: The basic algorithm for pseudo-Boolean programming revisited. Discr. Appl. Math. 29, 171–185 (1990)
Delorme C., Poljak S.: Laplacian eigenvalues and the maximum cut problem. Math. Program. 62, 557–574 (1993)
Fortet R.: Applications de lalgebre de Boole en recherche operationelle. Rev. Franc. Recherche Oper. 4, 17–26 (1960)
Fortet R.: L′algebre de boole et ses applications en recherche operationnelle. Trabajos estadística 11, 111–118 (1960)
Gallo G., Hammer P.L., Simeone B.: Quadratic knapsack problems. Math. Program. 12, 132–149 (1980)
Glover F., Kochenberger G.A., Alidaee B.: Adaptive memory tabu search for binary quadratic programs. Manage. Sci. 44, 336–345 (1998)
Glover F., Woolsey R.E.D.: Further reduction of zero-one polynomial programs to zero-one linear programming problems. Oper. Res. 21, 156–161 (1973)
Glover F., Woolsey R.E.D.: Note on converting the 0–1 polynomial programming problem into a 0–1 linear program. Oper. Res. 22, 180–181 (1974)
Goemans M.X., Williamson D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)
Gulati V.P., Gupta S.K., Mittal A.K.: Unconstrained quadratic bsivalent programming problem. Eur. J. Oper. Res. 15, 121–125 (1984)
Hammer P.L., Hansen P., Simeone B.: Roof duality, complementation and persistency in quadratic 0–1 optimization. Math. Program. 28, 121–155 (1984)
Hammer P.L., Rudeanu S.: Boolean Methods in Operations Research and Related Areas. Springer, Berlin (1968)
Hansen, P., Jaumard, B., Christophe, C.M.: A simple enumerative algorithm for unconstrained 0–1 quadratic programming. Technical report, Groupe d’études et de recherche en analyse des décisions. Cahiers du GERAD G-2000-59 (2000)
Hansen P., Jaumard B., Mathon V.: Constrained nonlinear 0–1 programming. ORSA J. Comput. 5, 97–119 (1993)
Helmberg C., Rendl F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Program. 82, 291–315 (1998)
Huang H.X., Pardalos P.M.: Lower bound improvement and forcing rule for quadratic binary programming. Comput. Optim. Appl. 33, 187–208 (2006)
Iasemidis L.D., Pardalos P.M., Sackellares J.C., Shiau D.-S.: Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. J. Combin. Optim. 5, 9–26 (2001)
Kalantari B., Bagchi A.: An algorithm for quadratic zero-one programs. Naval Res. Logist. 37, 527–538 (1990)
Konno H.: Maximizing a convex quadratic function over a hypercube. J. Oper. Res. Soc. Jpn. 23, 171–189 (1980)
Li D., Sun X.L.: Nonlinear Integer Programming. Springer, New York (2006)
Li D., Sun X.L., Wang F.L.: Convergent Lagrangian and contour-cut method for nonlinear integer programming with a quadratic objective function. SIAM J. Optim. 17, 372–400 (2006)
Li D., Sun X.L., Wang J.: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection. Math. Finance 16, 83–101 (2006)
Liu, W., Wilkins, D., Alidaee B.: A hybrid multi-exchange local search for unconstrained binary quadratic program. Technical report, Hearin Center for Enterprose Science, The University of Mississippi, Working Paper, HCES-09-05 (2005)
Lu S.H.: An improved enumerative algorithm for solving quadratic zero-one programming. Eur. J. Oper. Res. 15, 110–120 (1984)
Mcbride R.D., Yormark J.S.: An implicit enumeration algorithm for quadratic integer programming. Manage. Sci. 26, 282–296 (1980)
Palubeckis G.: A heuristic-based branch and bound algorithm for unconstrained quadratic zero-one programming. Computing 54, 283–301 (1995)
Pardalos P.M., Chaovalitwongse W., Iasemidis L.D., Sackellares J.C., Shiau D.-S., Carney P.R., Prokopyev O.A., Yatsenko V.A.: Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program. Ser. B 101, 365–385 (2004)
Pardalos P.M., Rodgers G.P.: Computational aspects of a branch-and-bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)
Phillips A.T., Rosen J.B.: A quadratic assignment formulation of the molecular conformation problem. J. Global Optim. 4, 229–241 (1994)
Rendl F., Rinaldi G., Wiegele A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Lect. Notes Comput. Sci. 4513, 295–309 (2007)
Sturm J.F.: Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)
Thoai N.V.: Global optimization techniques for solving the general quadratic integer programming problem. Comput. Optim. Appl. 10, 149–163 (1998)
Vanderbussche D., Nemhauser G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102, 371–405 (2005)
Vanderbussche D., Nemhauser G.L.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 102, 531–557 (2005)
Watters L.J.: Reduction of integer polynomial programming problems to zero-one linear programming problems. Oper. Res. 15, 1171–1174 (1967)
Williams, A.C.: Quadratic 0-1 programming using the roof dual with computational results. Technical report, RUTCOR, Rutgers University, RUTCOR Research Report RRR 8-1985 (1985)
Yajima Y., Fujie T.: A polyhedral approach for nonconvex quadratic programming problems with box constraints. J. Global Optim. 13, 151–170 (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by Research Grants Council of Hong Kong Grants CUHK4245/04E and 413606, by National Natural Science Foundation of China Grants 10971034 and 70832002, and by the Joint NSFC/RGC Grant 71061160506.
Rights and permissions
About this article
Cite this article
Li, D., Sun, X.L. & Liu, C.L. An exact solution method for unconstrained quadratic 0–1 programming: a geometric approach. J Glob Optim 52, 797–829 (2012). https://doi.org/10.1007/s10898-011-9713-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-011-9713-2