Computing maximum upward planar subgraphs of single-source embedded digraphs | Journal of Combinatorial Optimization
Skip to main content

Computing maximum upward planar subgraphs of single-source embedded digraphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We show how to compute a maximum upward planar single-source subgraph of a single-source embedded DAG G φ . We first show that finding a maximum upward planar subgraph of a single-source embedded digraph is NP-complete. We then give a new characterization of upward planar single-source digraphs. We use this characterization to present an algorithm that computes a maximum upward planar single-source subgraph of a single-source embedded DAG. This algorithm takes O(n 4) time in the worst case and O(n 3) time on average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi S, Healy P, Rextin A (2010) Improving the running time of embedded upward planarity testing. Inf Process Lett 110(7):274–278

    Article  MathSciNet  MATH  Google Scholar 

  • Bertolazzi P, Di Battista G, Liotta G, Mannino C (1994) Upward drawings of triconnected digraphs. Algorithmica 12(6):476–497

    Article  MathSciNet  MATH  Google Scholar 

  • Bertolazzi P, Di Battista G, Mannino C, Tamassia R (1998) Optimal upward planarity testing of single-source digraphs. SIAM J Comput 27(1):132–169

    Article  MathSciNet  MATH  Google Scholar 

  • Binucci C, Didimo W, Giordano F (2007) Maximum upward planar subgraphs of embedded planar digraphs. In: GD 2007

    Google Scholar 

  • Binucci C, Didimo W, Giordano F (2008) Maximum upward planar subgraphs of embedded planar digraphs. Comput Geom, Theory Appl 41(3):230–246

    Article  MathSciNet  MATH  Google Scholar 

  • Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph drawing: algorithms for the visualization of graphs. Prentice Hall, New York

    MATH  Google Scholar 

  • Didimo W (2006) Upward planar drawings and switch-regularity heuristics. J Graph Algorithms Appl 10(2):259–285

    Article  MathSciNet  MATH  Google Scholar 

  • Didimo W, Giordano F, Liotta G (2009) Upward spirality and upward planarity testing. SIAM J Discrete Math 23(4):1842–1899

    Article  MathSciNet  MATH  Google Scholar 

  • Garg A, Tamassia R (2001) On the computational complexity of upward and rectilinear planarity testing. SIAM J Comput 31(2):601–625

    Article  MathSciNet  MATH  Google Scholar 

  • Hutton MD, Lubiw A (1996) Upward planar drawing of single-source acyclic digraphs. SIAM J Comput 25(2):291–311

    Article  MathSciNet  MATH  Google Scholar 

  • Hutton M (1990) Upward planar drawing of single source acyclic digraphs. Master’s thesis, University of Waterloo

  • Papakostas A (1994) Upward planarity testing of outerplanar DAGs. In: Proceedings graph drawing, pp 298–306

    Google Scholar 

  • Sugiyama K, Tagawa S, Toda M (1981) Methods for visual understanding of hierarchical system structures. IEEE Trans Syst Man Cybern 1:109–125

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimal Rextin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rextin, A., Healy, P. Computing maximum upward planar subgraphs of single-source embedded digraphs. J Comb Optim 25, 368–392 (2013). https://doi.org/10.1007/s10878-010-9373-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-010-9373-z

Keywords