Abstract
We show how to compute a maximum upward planar single-source subgraph of a single-source embedded DAG G φ . We first show that finding a maximum upward planar subgraph of a single-source embedded digraph is NP-complete. We then give a new characterization of upward planar single-source digraphs. We use this characterization to present an algorithm that computes a maximum upward planar single-source subgraph of a single-source embedded DAG. This algorithm takes O(n 4) time in the worst case and O(n 3) time on average.
Similar content being viewed by others
References
Abbasi S, Healy P, Rextin A (2010) Improving the running time of embedded upward planarity testing. Inf Process Lett 110(7):274–278
Bertolazzi P, Di Battista G, Liotta G, Mannino C (1994) Upward drawings of triconnected digraphs. Algorithmica 12(6):476–497
Bertolazzi P, Di Battista G, Mannino C, Tamassia R (1998) Optimal upward planarity testing of single-source digraphs. SIAM J Comput 27(1):132–169
Binucci C, Didimo W, Giordano F (2007) Maximum upward planar subgraphs of embedded planar digraphs. In: GD 2007
Binucci C, Didimo W, Giordano F (2008) Maximum upward planar subgraphs of embedded planar digraphs. Comput Geom, Theory Appl 41(3):230–246
Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph drawing: algorithms for the visualization of graphs. Prentice Hall, New York
Didimo W (2006) Upward planar drawings and switch-regularity heuristics. J Graph Algorithms Appl 10(2):259–285
Didimo W, Giordano F, Liotta G (2009) Upward spirality and upward planarity testing. SIAM J Discrete Math 23(4):1842–1899
Garg A, Tamassia R (2001) On the computational complexity of upward and rectilinear planarity testing. SIAM J Comput 31(2):601–625
Hutton MD, Lubiw A (1996) Upward planar drawing of single-source acyclic digraphs. SIAM J Comput 25(2):291–311
Hutton M (1990) Upward planar drawing of single source acyclic digraphs. Master’s thesis, University of Waterloo
Papakostas A (1994) Upward planarity testing of outerplanar DAGs. In: Proceedings graph drawing, pp 298–306
Sugiyama K, Tagawa S, Toda M (1981) Methods for visual understanding of hierarchical system structures. IEEE Trans Syst Man Cybern 1:109–125
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rextin, A., Healy, P. Computing maximum upward planar subgraphs of single-source embedded digraphs. J Comb Optim 25, 368–392 (2013). https://doi.org/10.1007/s10878-010-9373-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10878-010-9373-z