Abstract
The combined analysis of tissue micro array and drug response datasets has the potential of revealing valuable knowledge about various relations among gene expressions and drug activity patterns in tumor cells. However, the amount and the complexity of biological data needs appropriate data mining models in order to extract interesting patterns and useful information. The ultimate goal of this paper is to define a model which, given the gene expression profile related to a specific tumor tissue, could help in selecting a set of most responsive drugs. This is accomplished through an integrated framework based on a constraint-based clustering algorithm, called Relational K-Means, which groups cell lines using drug response information and taking into account cell-to-cell relationships derived from their gene expression profiles.
Similar content being viewed by others
References
Amato, R., Menniti, M., Agosti, V., Boito, R., Costa, N., Bond, H.M., Barbieri, V., Tagliaferri, P., Venuta, S., Perrotti, N.: IL-2 signals through Sgk1 and inhibits proliferation and apoptosis in kidney cancer cells. J. Mol. Med. 85(7), 707–721 (2007)
Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised clustering. In: Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W. (eds.) Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 22–25 August 2004, Seattle, pp. 59–68. ACM, New York (2004)
Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised clustering. In: Greiner, R., Schuurmans, D. (eds.) Proceedings of the Twenty-First International Conference on Machine Learning 2004, Alberta, pp. 81–88. ACM, New York (2004)
Buchholz, M., Biebl, A., Neee, A., Wagner, M., Iwamura, T., Leder, G., Adler, G., Gress, T.: SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo. Cancer Res. 63, 4945–4951 (2003)
Chang, J.H., Hwang, K.B., Zhang, B.T.: Analysis of gene expression profiles and drug activity patterns by clustering and Bayesian network learning. In: Lin, S.M., Johnson, K.F. (eds.) Methods of Microarray Data Analysis II, chapter 11, pp. 169–184. Kluwer Academic, Dordrecht (2002)
Clark, C.J., Sage, E.H.: A prototypic matricellular protein in the tumor microenvironment where there’s SPARC, there’s fire. J. Cell. Biochem. 104(3), 721–732 (2008)
Cohen, J., Cohen, P., West, S.G., Aiken, L.S.: Applied Multiple Regression/Correlation Analysis for the Behavioural Science. Lawrence Erlbaum Associates, Hillsdale (2003)
Corsini, P., Lazzerini, B., Marcelloni, F.: A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm. J. Soft Comput. 9, 439–447 (2005)
Dasgupta, N., Lin, S.M., Carin, L.: Modeling pharmacogenomics of the NCI-60 anticancer data set: utilizing kernel PLS to correlate the microarray data to therapeutic responses. In: Lin, S.M., Johnson, K.F. (eds.) Methods of Microarray Data Analysis II, chapter 10, pp. 151–167. Kluwer Academic, Dordrecht (2002)
Del Rio, M., Molina, F., Bascoul-Mollevi, C., Copois, V., Bibeau, F., Chalbos, P., Bareil, C., Kramar, A., Salvetat, N., Fraslon, C., Conseiller, E., Granci, V., Leblanc, B., Pau, B., Martineau, P., Ychou, M.: Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan. J. Clin. Oncol. 25(7), 773–780 (2007)
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)
Edwards, K.M., Mnger, K.: Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 23(52), 8419–8431 (2004)
Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. In: Schekman, R. (ed.) Proceedings of the National Academy of Sciences of the United States of America, vol. 1998, pp. 14863–14868 (1998)
Eren, B., Sar, M., Oz, B., Dincbas, F.H.: MMP-2, TIMP-2 and CD44v6 expression in non-small-cell lung carcinomas. Ann. Acad. Med. Singap. 37(1), 32–39 (2008)
Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. In: Shamir, R., Miyano, S., Istrail, S., Pevzner, P., Waterman, M. (eds.) Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, 8–11 April 2000, Tokyo, pp. 127–135 (2000)
Gonzalez, T.F.: Clustering to minimize the maximum inter-cluster distance. J. Theor. Comput. Sci. 38, 293–306 (1985)
Graepel, T., Burger, M., Obermayer, K.: Self-organizing maps: generalizations and new optimization techniques. J. Neurocomput. 21, 173–190 (1998)
Hall, M.A.: Correlation-based feature reduction for discrete and numeric class machine learning. In: Proceedings of the 17th International Conference on Machine Learning (2000)
Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT, Cambridge (2001)
Hansen, G.A., Vorum, H., Jacobsen, C., Honore, B.: Calumenin but not reticulocalbin forms a Ca2 +-dependent complex with thrombospondin-1. A potential role in haemostasis and thrombosis. Mol. Cell. Biochem. 320, 25–33 (2009)
Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., Young, R.A.: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In: Altman, R.B., Dunker, A.K., Hunker, L., Lauderdale, K., Klein, T.E.D. (eds.) Proceedings of Pacific Symposium on Biocomputing, 3–7 January 2001, Hawaii, pp. 422–433 (2001)
Hwang, K.B., Cho, D.Y., Park, S.W., Kim, S.D., Zhang, B.T.: Applying machine learning techniques to analysis of gene expression data: cancer diagnosis. In: Lin, S.M., Johnson, K.F. (eds). Methods of Microarray Data Analysis, pp. 167–182. Kluwer Academic, Dordrecht (2001)
Jalilian, A., Javadi, E., Akrami, M., Fakhrzadeh, H., Heshmat, R., Rahmani, M., Bandarian, F.: Association of cys 311 ser polymorphism of paraoxonase-2 gene with the risk of coronary artery disease. Arch Iran Med. 11(5), 544–549 (2008)
Jiang, L.I., Collins, J., Davis, R., Fraser, I.D., Sternweis, P.C.: Regulation of cAMP responses by the G12/13 pathway converges on adenylyl cyclase VII. J. Biol. Chem. 283(34), 23429–23439 (2008)
Khan, J., Wei, J.S., Ringnr, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. J. Nat. Med. 7, 673–679 (2001)
Kim, S., Jin, J., Kunapuli, S.P.: Akt activation in platelets depends on Gi signaling pathways. J. Biol. Chem. 279(6), 4186–4195 (2004)
Kutty, R.K., Chen, S., Samuel, W., Vijayasarathy, C., Duncan, T., Tsai, J.Y., Fariss, R.N., Carper, D., Jaworski, C., Wiggert, B.: Cell density-dependent nuclear/cytoplasmic localization of NORPEG (RAI14) protein. Mol. Cell Biol. Res. Commun. 345(4), 1333–1341 (2006)
Lee, J.H., Kim, S.H., Lee, E.S., Kim, Y.S.: CD24 overexpression in cancer development and progression: a meta-analysis. Oncol. Rep. 22(5), 1149–1156 (2009)
Li, Z., Zhou, Z., Welch, D.R., Donahue, H.J.: Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs. Clin. Exp. Metastasis. 25(8), 893–901 (2008)
MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: LeCam, L.M., Neyman, N. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley (1967)
Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 35, D26–D31 (2007)
Mikosz, C.A., Brickley, D.R., Sharkey, M.S., Moran, T.W., Conzen, S.D.: Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J. Biol. Chem. 276, 16649–16654 (2001)
Ng, C.J., Bourquard, N., Grijalva, V., Hama, S., Shih, D.M., Navab, M., Fogelman, A.M., Lusis, A.J., Young, S., Reddy, S.T.: Paraoxonase-2 deficiency aggravates atherosclerosis in mice despite lower apolipoprotein-B-containing lipoproteins: anti-atherogenic role for paraoxonase-2. J. Biol. Chem. 281(40), 29491–29500 (2006)
Roberts, A.N., Leighton, B., Todd, J.A., Cockburn, D., Schofield, P.N., Sutton, R., Holt, S., Boyd, Y., Day, A.J., Foot, E.A.: Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proc. Natl. Acad. Sci. U.S.A. 86(24), 9662–9666 (1989)
Raychaudhuri, S., Stuart, J.M., Altman, R.B.: Principal components analysis to summarize microarray experiments: application to sporulation time series. In: Altman, R.B., Dunker, A.K., Hunker, L., Lauderdale, K., Klein, T.E.D. (eds.) Proceedings of Pacific Symposium on Biocomputing, 4–9 January 2000, Hawaii, pp. 452–463 (2000)
Qin, H., Shao, Q., Curtis, H., Galipeau, J., Belliveau, D.J., Wang, T., Alaoui-Jamali, M.A., Laird, D.W.: Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J. Biol. Chem. 277(32), 29132–29138 (2002)
Sagiv, E., Arber, N.: The novel oncogene CD24 and its arising role in the carcinogenesis of the GI tract: from research to therapy. Expert Rev. Gastroenterol. Hepatol. 2(1), 125–133 (2008)
Sato Y, Chen Z, Miyazaki K.. Strong suppression of tumor growth by insulin-like growth factor-binding protein-related protein 1/tumor-derived cell adhesion factor/mac25. Cancer Sci. 98(7), 1055–1063 (2007)
Scanlan, M.J., Gordan, J.D., Williamson, B., Stockert, E., Bander, N.H., Jongeneel, V., Gure, A.O., Jger, D., Jger, E., Knuth, A., Chen, Y.T., Old, L.J.: Antigens recognized by autologous antibody in patients with renal-cell carcinoma. Int. J. Cancer 83(4), 456–464 (1999)
Scherf, U., Ross, D.T., Waltham, M., Smith, L.H., Lee, J.K., Tanabe, L., Kohn, K.W., Reinhold, W.C., Myers, T.G., Andrews, D.T., Scudiero, D.A., Eisen, M.B., Sausville, E.A., Pommier, Y., Botstein, D., Brown, P.O., Weinstein, J.N.: A gene expression database for the molecular pharmacology of cancer. J. Nat. Genet. 66, 236–244 (2000)
Slomnicki, L.P., Nawrot, B., Leniak, W.: S100A6 binds p53 and affects its activity. Int. J. Biochem. Cell. Biol. 41(4), 784–790 (2009)
Sneath, P., Sokal, R.: Numerical Taxonomy: the Principles and Practice of Numerical Classification. Freeman, San Francisco (1973)
Staunton, J.E., Slonim, D.K., Coller, H.A., Tamayo, P., Angelo, M.J., Park, J., Scherf, U., Lee, J.K., Reinhold, W.O., Weinstein, J.N., Mesirov, J.P., Lander, E.S., Golub, T.R.: Chemosensitivity prediction by transcriptional profiling. Proc. Natl. Acad. Sci. U.S.A. 98, 10787–10792 (2001)
Toler, C.R., Taylor, D.D., Gercel-Taylor, C.: Loss of communication in ovarian cancer. Am. J. Obstet. Gynecol. 194(5), 27–31 (2006)
Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained K-Means clustering with background knowledge. In: Brodley, C.E., Danyluk, A.P. (eds.) Proceedings of the Eighteenth International Conference on Machine Learning, 28 June–1 July 2001, Williamstown, Massachusetts, pp. 577–584 (2001)
Yap, L.F., Jenei, V., Robinson, C.M., Moutasim, K., Benn, T.M., Threadgold, S.P., Lopes, V., Wei, W., Thomas, G.J., Paterson, I.C.: Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene 28, 2524–2534 (2009). doi:10.1038/onc.2009.105
Yap, L.F., Jenei, V., Robinson, C.M., Moutasim, K., Benn, T.M., Threadgold, S.P., Lopes, V., Wei, W., Thomas, G.J., Paterson, I.C.: Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene 28(27), 2524–2534 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fersini, E., Messina, E., Archetti, F. et al. Combining Gene Expression Profiles and Drug Activity Patterns Analysis: A Relational Clustering Approach. J Math Model Algor 9, 275–289 (2010). https://doi.org/10.1007/s10852-010-9140-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10852-010-9140-2