Minimizing the Makespan in Nonpreemptive Parallel Machine Scheduling Problem | Journal of Mathematical Modelling and Algorithms in Operations Research Skip to main content
Log in

Minimizing the Makespan in Nonpreemptive Parallel Machine Scheduling Problem

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

A new n log n algorithm for the scheduling problem of n independent jobs on m identical parallel machines with minimum makespan objective is proposed and its worst-case performance ratio is estimated. The algorithm iteratively combines partial solutions that are obtained by partitioning the set of jobs into suitable families of subsets. The computational behavior on three families of instances taken from the literature provided interesting results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, E.J., Glass, C.A., Potts, C.N.: Machine scheduling. In: Aarts, Lenstra (eds.) Local Search in Combinatorial Optimization, pp. 361–414. Wiley, New York (1997)

    Google Scholar 

  2. Chen, B., Potts, C.N., Woeginger, G.J.: A review of machine scheduling: complexity, algorithms and approximability. In: Du, D.Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, vol. 3, pp. 21–169. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  3. Cheng, T., Sin, C.: A state of the art review of parallel machine scheduling research. Eur. J. Oper. Res. 47, 271–292 (1990)

    Article  MATH  Google Scholar 

  4. Coffman, E.G. Jr., Garey, M.R., Johnson, D.S.: An application of bin-packing to multiprocessor scheduling. SIAM J. Comput. 7, 1–17 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coffman, E.G. Jr., Sethi, R.: A generalized bound on LPT sequencing. RAIRO-Inform. 10, 17–25 (1976)

    MathSciNet  Google Scholar 

  6. França, P.M., Gendrau, M., Laporte, G., Muller, F.M.: A composite heuristic for the identical parallel machine scheduling problem with minimum makespan objective. Comput. Ops. Res. 21(2), 205–210 (1994)

    Article  MATH  Google Scholar 

  7. Frangioni, A., Scutellà, M.G., Necciari, E.: Multi-exchange algorithms for the minimum makespan machine. Technical Report:99-22, Dipartimento di Matematica. University of Pisa, Italy (1999)

  8. Frangioni, A., Necciari, E., Scutellà, M.G.: A multi-exchange neighborhood for minimum makespan machine scheduling problems. J. Comb. Optim. 8, 195–220 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Friesen, D.K.: Tighter bounds for the MultiFit processor scheduling algorithm. SIAM J. Comput. 13, 170–181 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  11. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45, 1563–1581 (1966)

    Google Scholar 

  12. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 416–429 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  13. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling a survey. Ann. Discrete Math. 5, 287–326 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. Assoc. Comput. Mach. 34, 144–162 (1987)

    MathSciNet  Google Scholar 

  15. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and scheduling: algorithms and complexity in logistics of production and inventory. In: Handbooks in Operation Research and Management Science, vol. 4, pp. 445–522. Elsevier Science, Amsterdam (1993)

    Google Scholar 

  16. Leung, J. (ed.): Handbook of Scheduling: Algorithms, Models, and Performance Analysis. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  17. Paletta, G., Pietramala, P.: A new approximation algorithm for the non-preemptive scheduling of independent jobs on identical parallel processors. SIAM J. Discrete Math. 21, 313–328 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ullman, J.D.: Complexity of sequencing problems. In: Coffman, E.G. (ed.) Computer and Job Shop Scheduling Theory, pp. 139–164. Wiley, New York (1976)

    Google Scholar 

  19. Yue, M.: On the exact upper bound for the MultiFit processor scheduling algorithm. Ann. Oper. Res. 24, 233–259 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolamaria Pietramala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiaselotti, G., Gualtieri, M.I. & Pietramala, P. Minimizing the Makespan in Nonpreemptive Parallel Machine Scheduling Problem. J Math Model Algor 9, 39–51 (2010). https://doi.org/10.1007/s10852-009-9120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-009-9120-6

Keywords

Mathematics Subject Classifications (2000)

Navigation