Abstract
In this paper, we consider the problem of restoring blurred noisy vectorial images where the blurring model involves contributions from the different image channels (cross-channel blur). The proposed method restores the images by solving a sequence of quadratic constrained minimization problems where the constraint is automatically adapted to improve the quality of the restored images. In the present case, the constraint is the Total Variation extended to vectorial images, and the objective function is the \(\ell _2\) norm of the residual. After proving the convergence of the iterative method, we report the results obtained on a wide set of test images, showing that this approach is efficient for recovering nearly optimal results.












Similar content being viewed by others
References
Almeida, M.S.C., Figueiredo, M.A.T.: Parameter estimation for blind and non-blind deblurring using residual whiteness measures. IEEE Trans. Image Process. 22(7), 2751–2763 (2013)
Aujol, J., Gilboa, G.: Constrained and SNR-based solutions for TV-Hilbert space image denoising. J. Math. Imaging Vis. 26, 217–237 (2006)
Babacan, S., Molina, R., Katsaggelos, A.: Parameter estimation in TV image restoration using variational distribution approximation. IEEE Trans. Image Process. 17(3), 326–339 (2008)
Blomgren, P., Chan, T.F.: Color TV: total variation methods for restoration of vector-valued images. IEEE Trans. Image Process. 7(3), 304–309 (1998)
Blomgren, P., Chan, T.F.: Modular solvers for image restoration problems using the discrepancy principle. Numer. Linear. Algebra Appl. 9, 347–358 (2002)
Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imaging 2(4), 455–484 (2008)
Brito-Loeza, C., Chen, K.: On high-order denoising models and fast algorithms for vector-valued images. IEEE Trans. Image Process. 19(6), 1518–1527 (2010)
Chen, K., Loli, E.: Piccolomini, and F. Zama. An automatic regularization parameter selection algorithm in the total variation model for image deblurring. Numer. Algorithms 92, 67–73 (2014)
Dong, Y., Hintermuller, M., Rincon-Camacho, M.M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40(1), 83–104 (2011)
Dong, Y., Hintermuller, M., Rincon-Camacho, M.M.: A multi-scale vectorial \(L^\tau \)-TV framework for color image restoration. Int. J. Comput. Vis. 92, 296–307 (2011)
Eldar, Y.: Generalized SURE for exponential families. IEEE Trans. Image Process. 21(8), 3659–3672 (2012)
Fornasier, M., March, R.: Restoration of color images by vector valued BV functions and variational calculus. SIAM J. Appl. Math. 68(2), 437–460 (2007)
Galatsanos, N., Katsaggelos, A., Chin, R., Hillery, A.: Least Squares restoration of multichannel images. IEEE Trans. Signal Process. 39(10), 2222–2236 (1991)
Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, And Filtering. SIAM Publications, Philadelphia (2006)
Hansen, P.C., O’Leary, D.P.: The use of L-curve in the regularization of of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993)
Hansen, P.C., Kilmer, M.E., Kjeldsen, R.H.: Exploiting residual information in the parameter choice for discrete ill-posed problems. BIT 46, 41–59 (2006)
Liao, H., Li, F., Ng, M.: Selection of regularization parameter in total variation image restoration. J. Opt. Soc. Am. A 26(11), 2311–2320 (2009)
Lukas, M.A.: Robust generalized cross validation for choosing the regularization parameter. Inverse Probl. 22, 1883–1902 (2006)
Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)
Ramani, S., Liu, Z., Rosen, J., Nielsen, J., Fessler, J.: Regularization parameter selection for nonlinear iterative restoration and MRI reconstruction using GCV and SURE-based methods. IEEE Trans. Image Process. 21(8), 3659–3672 (2012)
Stein, C.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981)
Strong, D., Blomgren, P., Chan, T.F.: Spatially adaptive local feature driven total variation minimizing image restoration. CAM Report 97-32, UCLA Math Department (1997)
Strong, D., Blomgren, P., Chan, T.F.: Scale recognition regularization parameter selection and Meyer’s G norm in Total Variation regularization. CAM Report 05-02, UCLA Math Department (2005)
Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 7, 813–824 (1998)
Yang, J., Zhang, Y., Yin, W.T.: A fast alternating direction method for \(tvl1-l2\) signal reconstruction from partial Fourier data. Selected topics in IEEE. J. Signal Process. 4(2), 288–297 (2010)
Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2(2), 569–592 (2009)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Perceptual image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wen, Y., Chan, R.: Parameter selection for total variation based image restoration using discrepancy principle. IEEE Trans. Image Process. 21(4), 1770–1781 (2012)
Zhang, J.P., Chen, K., Yu, B.: An iterative lagrange multiplier method for constrained total-variation-based image denoising. SIAM J. Numer. Anal. 50(3), 983–1003 (2012)
Zhu, X., Milanfar, P.: Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans. Image Process. 19(12), 3116–3132 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, K., Piccolomini, E.L. & Zama, F. Iterative Constrained Minimization for Vectorial TV Image Deblurring. J Math Imaging Vis 54, 240–255 (2016). https://doi.org/10.1007/s10851-015-0599-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-015-0599-3