Abstract
Matching a pair of affine invariant regions between images results in estimation of the affine transformation between the regions. However, the parameters of the affine transformations are rarely used directly for matching images, mainly due to the lack of an appropriate error metric of the distance between them.
In this paper we derive a novel metric for measuring the distance between affine transformations: Given an image region, we show that minimization of this metric is equivalent to the minimization of the mean squared distance between affine transformations of a point, sampled uniformly on the image region. Moreover, the metric of the distance between affine transformations is equivalent to the l 2 norm of a linear transformation of the difference between the six parameters of the affine transformations. We employ the metric for estimating homographies and for estimating the fundamental matrix between images. We show that both homography estimation and fundamental matrix estimation methods, based on the proposed metric, are superior to current linear estimation methods as they provide better accuracy without increasing the computational complexity.
Similar content being viewed by others
References
Bentolila, J., Francos, J.M.: Affine consistency graphs for image representation and elastic matching. In: International Conference on Image Processing (2012)
Cho, M., Lee, J., Lee, K.M.: Feature correspondence and deformable object matching via agglomerative correspondence clustering. In: IEEE 12th International Conference on Computer Vision, 2009, pp. 1280–1287 (2009)
Chum, O., Matas, J., Stepan, O.: Epipolar geometry from three correspondences. In: Computer Vision Winter Workshop (2003)
Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. Artificial Intelligence. MIT Press, New York (1993)
Ferrari, V., Tuytelaars, T., Van Gool, L.: Simultaneous object recognition and segmentation from single or multiple model views. Int. J. Comput. Vis. 67(2), 159–188 (2006)
Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings of the Fourth Alvey Vision Conference, pp. 147–151 (1988)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, New York (2003)
Hartley, R.I.: In defence of the 8-point algorithm. In: Proceedings of the Fifth International Conference on Computer Vision, ICCV ’95, p. 1064. IEEE Computer Society, Washington (1995)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision Cambridge University Press, Cambridge (2000). ISBN:0521623049
Kannala, J., Brandt, S.: Quasi-dense wide baseline matching using match propagation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’07, pp. 1–8 (2007)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)
Matas, J.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)
Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Proc. European Conf. Computer Vision, pp. 128–142. Springer, Berlin (2002)
Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vis. 65, 2005 (2005)
Moravec, H.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Tech. report CMU-RI-TR-80-03. Robotics Institute, Carnegie Mellon University. CMU-RI-TR-80-03 (1980)
Perdoch, M., Matas, J., Chum, O.: Epipolar geometry from two correspondences. In: Proceedings of the 18th International Conference on Pattern Recognition, vol. 04, ICPR ’06, pp. 215–219. IEEE Computer Society, Washington (2006)
Riggi, F., Toews, M., Arbel, T.: Fundamental matrix estimation via tip—transfer of invariant parameters. In: Proceedings of the 18th International Conference on Pattern Recognition, ICPR ’06, vol. 02, pp. 21–24. IEEE, Washington (2006)
Szeliski, R., Torr, P.: Geometrically constrained structure from motion: points on planes. In: 3D Structure from Multiple Images of Large-Scale Environments, pp. 171–186 (1998)
Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)
Tuytelaars, T., Gool, L.V.: Wide baseline stereo matching based on local, affinely invariant regions. In: Proc. BMVC, pp. 412–425 (2000)
Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bentolila, J., Francos, J.M. Homography and Fundamental Matrix Estimation from Region Matches Using an Affine Error Metric. J Math Imaging Vis 49, 481–491 (2014). https://doi.org/10.1007/s10851-013-0481-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-013-0481-0